BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 25202268)

  • 1. Deficiency of prion protein induces impaired autophagic flux in neurons.
    Shin HY; Park JH; Carp RI; Choi EK; Kim YS
    Front Aging Neurosci; 2014; 6():207. PubMed ID: 25202268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress impairs autophagic flux in prion protein-deficient hippocampal cells.
    Oh JM; Choi EK; Carp RI; Kim YS
    Autophagy; 2012 Oct; 8(10):1448-61. PubMed ID: 22889724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of co-isogenic prion protein deficient mice reveals behavioral deficits, learning impairment, and enhanced hippocampal excitability.
    Matamoros-Angles A; Hervera A; Soriano J; Martí E; Carulla P; Llorens F; Nuvolone M; Aguzzi A; Ferrer I; Gruart A; Delgado-García JM; Del Río JA
    BMC Biol; 2022 Jan; 20(1):17. PubMed ID: 35027047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The involvement of cellular prion protein in the autophagy pathway in neuronal cells.
    Oh JM; Shin HY; Park SJ; Kim BH; Choi JK; Choi EK; Carp RI; Kim YS
    Mol Cell Neurosci; 2008 Oct; 39(2):238-47. PubMed ID: 18674620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular prion protein regulates the differentiation and function of adipocytes through autophagy flux.
    Jeong JK; Lee JH; Kim SW; Hong JM; Seol JW; Park SY
    Mol Cell Endocrinol; 2019 Feb; 481():84-94. PubMed ID: 30513342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Update on Autophagy in Prion Diseases.
    López-Pérez Ó; Badiola JJ; Bolea R; Ferrer I; Llorens F; Martín-Burriel I
    Front Bioeng Biotechnol; 2020; 8():975. PubMed ID: 32984276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-dependent impairment of eyeblink conditioning in prion protein-deficient mice.
    Kishimoto Y; Hirono M; Atarashi R; Sakaguchi S; Yoshioka T; Katamine S; Kirino Y
    PLoS One; 2013; 8(4):e60627. PubMed ID: 23593266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease.
    Sulzer D; Mosharov E; Talloczy Z; Zucca FA; Simon JD; Zecca L
    J Neurochem; 2008 Jul; 106(1):24-36. PubMed ID: 18384642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of the prion gene Prnp affects offensive aggression in mice.
    Büdefeld T; Majer A; Jerin A; Majdic G
    Behav Brain Res; 2014 Jun; 266():216-21. PubMed ID: 24631389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strictly co-isogenic C57BL/6J-Prnp-/- mice: A rigorous resource for prion science.
    Nuvolone M; Hermann M; Sorce S; Russo G; Tiberi C; Schwarz P; Minikel E; Sanoudou D; Pelczar P; Aguzzi A
    J Exp Med; 2016 Mar; 213(3):313-27. PubMed ID: 26926995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prion protein and susceptibility to kainate-induced seizures: genetic pitfalls in the use of PrP knockout mice.
    Striebel JF; Race B; Chesebro B
    Prion; 2013; 7(4):280-5. PubMed ID: 23851597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of GABA(A) and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice.
    Rangel A; Madroñal N; Gruart A; Gavín R; Llorens F; Sumoy L; Torres JM; Delgado-García JM; Del Río JA
    PLoS One; 2009 Oct; 4(10):e7592. PubMed ID: 19855845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prion protein and copper cooperatively protect neurons by modulating NMDA receptor through S-nitrosylation.
    Gasperini L; Meneghetti E; Pastore B; Benetti F; Legname G
    Antioxid Redox Signal; 2015 Mar; 22(9):772-84. PubMed ID: 25490055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to reduce the accumulation of autophagic vacuoles in NPC1-deficient neurons: a comparison of two pharmacological strategies.
    Meske V; Priesnitz T; Albert F; Ohm TG
    Neuropharmacology; 2015 Feb; 89():282-9. PubMed ID: 25446672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired autophagic flux is associated with the severity of trauma and the role of A
    Zeng XJ; Li P; Ning YL; Zhao Y; Peng Y; Yang N; Zhao ZA; Chen JF; Zhou YG
    Cell Death Dis; 2018 Feb; 9(2):252. PubMed ID: 29449536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered mRNA and Protein Expression of Monocarboxylate Transporter MCT1 in the Cerebral Cortex and Cerebellum of Prion Protein Knockout Mice.
    Ramljak S; Schmitz M; Repond C; Zerr I; Pellerin L
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33557247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The autophagic defect in Niemann-Pick disease type C neurons differs from somatic cells and reduces neuronal viability.
    Meske V; Erz J; Priesnitz T; Ohm TG
    Neurobiol Dis; 2014 Apr; 64():88-97. PubMed ID: 24412309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The prion gene complex encoding PrP(C) and Doppel: insights from mutational analysis.
    Mastrangelo P; Westaway D
    Gene; 2001 Sep; 275(1):1-18. PubMed ID: 11574147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cathepsin D deficiency induces persistent neurodegeneration in the absence of Bax-dependent apoptosis.
    Shacka JJ; Klocke BJ; Young C; Shibata M; Olney JW; Uchiyama Y; Saftig P; Roth KA
    J Neurosci; 2007 Feb; 27(8):2081-90. PubMed ID: 17314303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease.
    Rothaug M; Stroobants S; Schweizer M; Peters J; Zunke F; Allerding M; D'Hooge R; Saftig P; Blanz J
    Acta Neuropathol Commun; 2015 Jan; 3():6. PubMed ID: 25637286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.