BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25202300)

  • 61. Super multi-channel recording systems with UWB wireless transmitter for BMI.
    Suzuki T; Ando H; Yoshida T; Sawahata H; Kawasaki K; Hasegawa I; Matsushita K; Hirata M; Yoshimine T; Takizawa K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5208-11. PubMed ID: 25571167
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Stable, chronic in-vivo recordings from a fully wireless subdural-contained 65,536-electrode brain-computer interface device.
    Jung T; Zeng N; Fabbri JD; Eichler G; Li Z; Willeke K; Wingel KE; Dubey A; Huq R; Sharma M; Hu Y; Ramakrishnan G; Tien K; Mantovani P; Parihar A; Yin H; Oswalt D; Misdorp A; Uguz I; Shinn T; Rodriguez GJ; Nealley C; Gonzales I; Roukes M; Knecht J; Yoshor D; Canoll P; Spinazzi E; Carloni LP; Pesaran B; Patel S; Youngerman B; Cotton RJ; Tolias A; Shepard KL
    bioRxiv; 2024 May; ():. PubMed ID: 38798494
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A novel wireless recording and stimulating multichannel epicortical grid for supplementing or enhancing the sensory-motor functions in monkey (Macaca fascicularis).
    Zippo AG; Romanelli P; Torres Martinez NR; Caramenti GC; Benabid AL; Biella GE
    Front Syst Neurosci; 2015; 9():73. PubMed ID: 26029061
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Seamless Capacitive Body Channel Wireless Power Transmission Toward Freely Moving Multiple Animals in an Animal Cage.
    Chang Y; Jang J; Cho J; Lee J; Son Y; Park S; Kim C
    IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):714-725. PubMed ID: 35976817
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming.
    Sinai A; Bowers CW; Crainiceanu CM; Boatman D; Gordon B; Lesser RP; Lenz FA; Crone NE
    Brain; 2005 Jul; 128(Pt 7):1556-70. PubMed ID: 15817517
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A 3 mm × 3 mm Fully Integrated Wireless Power Receiver and Neural Interface System-on-Chip.
    Kim C; Park J; Ha S; Akinin A; Kubendran R; Mercier PP; Cauwenberghs G
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1736-1746. PubMed ID: 31581095
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An Intracortical Implantable Brain-Computer Interface for Telemetric Real-Time Recording and Manipulation of Neuronal Circuits for Closed-Loop Intervention.
    Zaer H; Deshmukh A; Orlowski D; Fan W; Prouvot PH; Glud AN; Jensen MB; Worm ES; Lukacova S; Mikkelsen TW; Fitting LM; Adler JR; Schneider MB; Jensen MS; Fu Q; Go V; Morizio J; Sørensen JCH; Stroh A
    Front Hum Neurosci; 2021; 15():618626. PubMed ID: 33613212
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enabling Low-Power, Multi-Modal Neural Interfaces Through a Common, Low-Bandwidth Feature Space.
    Irwin ZT; Thompson DE; Schroeder KE; Tat DM; Hassani A; Bullard AJ; Woo SL; Urbanchek MG; Sachs AJ; Cederna PS; Stacey WC; Patil PG; Chestek CA
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):521-31. PubMed ID: 26600160
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Consistency of Long-Term Subdural Electrocorticography in Humans.
    Nurse ES; John SE; Freestone DR; Oxley TJ; Ung H; Berkovic SF; O'Brien TJ; Cook MJ; Grayden DB
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):344-352. PubMed ID: 29364119
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Wireless Photometry Prototype for Tri-Color Excitation and Multi-Region Recording.
    Chakravarti A; Marangalou AH; Costanzo IM; Sen D; Sciulli M; Tsuno Y; Guler U
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630195
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Simulation-Informed Power Budget Estimate of a Fully-Implantable Brain-Computer Interface.
    Serrano-Amenos C; Hu F; Wang PT; Heydari P; Do AH; Nenadic Z
    Ann Biomed Eng; 2024 May; ():. PubMed ID: 38753110
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An electrocorticographic brain interface in an individual with tetraplegia.
    Wang W; Collinger JL; Degenhart AD; Tyler-Kabara EC; Schwartz AB; Moran DW; Weber DJ; Wodlinger B; Vinjamuri RK; Ashmore RC; Kelly JW; Boninger ML
    PLoS One; 2013; 8(2):e55344. PubMed ID: 23405137
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A rational, multispectral mapping algorithm for primary motor cortex: A primary step before cortical stimulation.
    Neshige S; Kobayashi K; Matsuhashi M; Hitomi T; Shimotake A; Kikuchi T; Yoshida K; Kunieda T; Matsumoto R; Miyamoto S; Takahashi R; Maruyama H; Ikeda A
    Epilepsia; 2019 Mar; 60(3):547-559. PubMed ID: 30790267
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A multicenter, open-label, controlled trial on acceptance, convenience, and complications of rechargeable internal pulse generators for deep brain stimulation: the Multi Recharge Trial.
    Jakobs M; Helmers AK; Synowitz M; Slotty PJ; Anthofer JM; Schlaier JR; Kloss M; Unterberg AW; Kiening KL
    J Neurosurg; 2019 Aug; 133(3):821-829. PubMed ID: 31419794
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Intrasulcal electrocorticography in macaque monkeys with minimally invasive neurosurgical protocols.
    Matsuo T; Kawasaki K; Osada T; Sawahata H; Suzuki T; Shibata M; Miyakawa N; Nakahara K; Iijima A; Sato N; Kawai K; Saito N; Hasegawa I
    Front Syst Neurosci; 2011; 5():34. PubMed ID: 21647392
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phase relationship between micro-electrocorticography and cortical neurons.
    Richner TJ; Brodnick SK; Thongpang S; Sandberg AA; Krugner-Higby LA; Williams JC
    J Neural Eng; 2019 Oct; 16(6):066028. PubMed ID: 31318702
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A measure of cortico-cortical potentials evoked by 10 Hz direct electrical stimulation of the brain and by means of a differential recording mode of electrocorticographic signals.
    Vincent M; Rossel O; Duffau H; Bonnetblanc F; Guiraud D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4543-4546. PubMed ID: 28269287
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fully Passive Flexible Wireless Neural Recorder for the Acquisition of Neuropotentials from a Rat Model.
    Liu S; Moncion C; Zhang J; Balachandar L; Kwaku D; Riera JJ; Volakis JL; Chae J
    ACS Sens; 2019 Dec; 4(12):3175-3185. PubMed ID: 31670508
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Real-time control of a prosthetic hand using human electrocorticography signals.
    Yanagisawa T; Hirata M; Saitoh Y; Goto T; Kishima H; Fukuma R; Yokoi H; Kamitani Y; Yoshimine T
    J Neurosurg; 2011 Jun; 114(6):1715-22. PubMed ID: 21314273
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Magnetoencephalography-directed surgery in patients with neocortical epilepsy.
    Mamelak AN; Lopez N; Akhtari M; Sutherling WW
    J Neurosurg; 2002 Oct; 97(4):865-73. PubMed ID: 12405375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.