These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25202840)

  • 1. Identifying children's nocturnal sleep using 24-h waist accelerometry.
    Barreira TV; Schuna JM; Mire EF; Katzmarzyk PT; Chaput JP; Leduc G; Tudor-Locke C
    Med Sci Sports Exerc; 2015 May; 47(5):937-43. PubMed ID: 25202840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can an automated sleep detection algorithm for waist-worn accelerometry replace sleep logs?
    Barreira TV; Redmond JG; Brutsaert TD; Schuna JM; Mire EF; Katzmarzyk PT; Tudor-Locke C
    Appl Physiol Nutr Metab; 2018 Oct; 43(10):1027-1032. PubMed ID: 29701486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nocturnal sleep-related variables from 24-h free-living waist-worn accelerometry: International Study of Childhood Obesity, Lifestyle and the Environment.
    Tudor-Locke C; Mire EF; Barreira TV; Schuna JM; Chaput JP; Fogelholm M; Hu G; Kurpad A; Kuriyan R; Lambert EV; Maher C; Maia J; Matsudo V; Olds T; Onywera V; Sarmiento OL; Standage M; Tremblay MS; Zhao P; Church TS; Katzmarzyk PT;
    Int J Obes Suppl; 2015 Dec; 5(Suppl 2):S47-52. PubMed ID: 27152185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automated waist-worn accelerometer algorithm for detecting children's sleep-period time separate from 24-h physical activity or sedentary behaviors.
    Tudor-Locke C; Barreira TV; Schuna JM; Mire EF; Katzmarzyk PT
    Appl Physiol Nutr Metab; 2014 Jan; 39(1):53-7. PubMed ID: 24383507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving wear time compliance with a 24-hour waist-worn accelerometer protocol in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE).
    Tudor-Locke C; Barreira TV; Schuna JM; Mire EF; Chaput JP; Fogelholm M; Hu G; Kuriyan R; Kurpad A; Lambert EV; Maher C; Maia J; Matsudo V; Olds T; Onywera V; Sarmiento OL; Standage M; Tremblay MS; Zhao P; Church TS; Katzmarzyk PT;
    Int J Behav Nutr Phys Act; 2015 Feb; 12():11. PubMed ID: 25881074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are parent-reported sleep logs essential? A comparison of three approaches to guide open source accelerometry-based nocturnal sleep processing in children.
    Burkart S; Beets MW; Pfledderer CD; von Klinggraeff L; Zhu X; St Laurent CW; van Hees VT; Armstrong B; Weaver RG; Adams EL
    J Sleep Res; 2024 Aug; 33(4):e14112. PubMed ID: 38009378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The convergent validity of Actiwatch 2 and ActiGraph Link accelerometers in measuring total sleeping period, wake after sleep onset, and sleep efficiency in free-living condition.
    Lee PH; Suen LK
    Sleep Breath; 2017 Mar; 21(1):209-215. PubMed ID: 27614441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of accelerometer data processing decisions on the sample size, wear time and physical activity level of a large cohort study.
    Keadle SK; Shiroma EJ; Freedson PS; Lee IM
    BMC Public Health; 2014 Nov; 14():1210. PubMed ID: 25421941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 24 h Accelerometry: impact of sleep-screening methods on estimates of sedentary behaviour and physical activity while awake.
    Meredith-Jones K; Williams S; Galland B; Kennedy G; Taylor R
    J Sports Sci; 2016; 34(7):679-85. PubMed ID: 26194337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying waking time in 24-h accelerometry data in adults using an automated algorithm.
    van der Berg JD; Willems PJ; van der Velde JH; Savelberg HH; Schaper NC; Schram MT; Sep SJ; Dagnelie PC; Bosma H; Stehouwer CD; Koster A
    J Sports Sci; 2016 Oct; 34(19):1867-73. PubMed ID: 26837855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raw Accelerometer Data Analysis with GGIR R-package: Does Accelerometer Brand Matter?
    Rowlands AV; Yates T; Davies M; Khunti K; Edwardson CL
    Med Sci Sports Exerc; 2016 Oct; 48(10):1935-41. PubMed ID: 27183118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating sleep efficiency in 10- to- 13-year-olds using a waist-worn accelerometer.
    Borghese MM; Lin Y; Chaput JP; Janssen I
    Sleep Health; 2018 Feb; 4(1):110-115. PubMed ID: 29332671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ActiGraph GT3X+ and Actical Wrist and Hip Worn Accelerometers for Sleep and Wake Indices in Young Children Using an Automated Algorithm: Validation With Polysomnography.
    Smith C; Galland B; Taylor R; Meredith-Jones K
    Front Psychiatry; 2019; 10():958. PubMed ID: 31992999
    [No Abstract]   [Full Text] [Related]  

  • 14. Development and application of an automated algorithm to identify a window of consecutive days of accelerometer wear for large-scale studies.
    Rillamas-Sun E; Buchner DM; Di C; Evenson KR; LaCroix AZ
    BMC Res Notes; 2015 Jun; 8():270. PubMed ID: 26113170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying bedrest using 24-h waist or wrist accelerometry in adults.
    Tracy JD; Acra S; Chen KY; Buchowski MS
    PLoS One; 2018; 13(3):e0194461. PubMed ID: 29570740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stability of sleep patterns in children 3 to 7 years of age.
    Taylor RW; Williams SM; Farmer VL; Taylor BJ
    J Pediatr; 2015 Mar; 166(3):697-702.e1. PubMed ID: 25524316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of an automated sleep detection algorithm using data from multiple accelerometer brands.
    Plekhanova T; Rowlands AV; Davies MJ; Hall AP; Yates T; Edwardson CL
    J Sleep Res; 2023 Jun; 32(3):e13760. PubMed ID: 36317222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlates of nocturnal sleep duration, nocturnal sleep variability, and nocturnal sleep problems in toddlers: results from the GET UP! Study.
    Zhang Z; Sousa-Sá E; Pereira J; Chaput JP; Okely A; Feng X; Santos R
    Sleep Med; 2019 Jan; 53():124-132. PubMed ID: 30508780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameterizing and validating existing algorithms for identifying out-of-bed time using hip-worn accelerometer data from older women.
    Bellettiere J; Zhang Y; Berardi V; Full KM; Kerr J; LaMonte MJ; Evenson KR; Hovell M; LaCroix AZ; Di C
    Physiol Meas; 2019 Jul; 40(7):075008. PubMed ID: 31018183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Algorithms for using an activity-based accelerometer for identification of infant sleep-wake states during nap studies.
    Galland BC; Kennedy GJ; Mitchell EA; Taylor BJ
    Sleep Med; 2012 Jun; 13(6):743-51. PubMed ID: 22542788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.