BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 25202966)

  • 21. Expression in Escherichia coli of Y5 mutant and N-terminal domain-deleted DNA gyrase B proteins affects strongly plasmid maintenance.
    Brino L; Mousli M; Oudet P; Weiss E
    Plasmid; 1998; 39(1):21-34. PubMed ID: 9473443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploiting nucleotide thiophosphates to probe mechanistic aspects of Escherichia coli DNA gyrase.
    Cullis PM; Maxwell A; Weiner DP
    Biochemistry; 1997 May; 36(20):6059-68. PubMed ID: 9166776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional interactions between gyrase subunits are optimized in a species-specific manner.
    Weidlich D; Klostermeier D
    J Biol Chem; 2020 Feb; 295(8):2299-2312. PubMed ID: 31953321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cooperative DnaA Binding to the Negatively Supercoiled datA Locus Stimulates DnaA-ATP Hydrolysis.
    Kasho K; Tanaka H; Sakai R; Katayama T
    J Biol Chem; 2017 Jan; 292(4):1251-1266. PubMed ID: 27941026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression in Escherichia coli of Y5-mutant and N-terminal domain-deleted DNA gyrase B proteins affects strongly plasmid maintenance.
    Brino L; Mousli M; Oudet P; Weiss E
    Plasmid; 1997; 38(3):188-201. PubMed ID: 9435021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA.
    Slocum SL; Buss JA; Kimura Y; Bianco PR
    J Mol Biol; 2007 Mar; 367(3):647-64. PubMed ID: 17292398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase.
    Rodríguez AC
    Biochemistry; 2003 May; 42(20):5993-6004. PubMed ID: 12755601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis.
    Ban C; Yang W
    Cell; 1998 Nov; 95(4):541-52. PubMed ID: 9827806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy coupling in DNA gyrase and the mechanism of action of novobiocin.
    Sugino A; Higgins NP; Brown PO; Peebles CL; Cozzarelli NR
    Proc Natl Acad Sci U S A; 1978 Oct; 75(10):4838-42. PubMed ID: 368801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pentapeptide repeat protein QnrB1 requires ATP hydrolysis to rejuvenate poisoned gyrase complexes.
    Mazurek Ł; Ghilarov D; Michalczyk E; Pakosz Z; Metelev M; Czyszczoń W; Wawro K; Behroz I; Dubiley S; Süssmuth RD; Heddle JG
    Nucleic Acids Res; 2021 Feb; 49(3):1581-1596. PubMed ID: 33434265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions.
    Meyer P; Prodromou C; Hu B; Vaughan C; Roe SM; Panaretou B; Piper PW; Pearl LH
    Mol Cell; 2003 Mar; 11(3):647-58. PubMed ID: 12667448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of monovalent cations in the ATPase reaction of DNA gyrase.
    Hearnshaw SJ; Chung TT; Stevenson CE; Maxwell A; Lawson DM
    Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):996-1005. PubMed ID: 25849408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation.
    Karamanou S; Vrontou E; Sianidis G; Baud C; Roos T; Kuhn A; Politou AS; Economou A
    Mol Microbiol; 1999 Dec; 34(5):1133-45. PubMed ID: 10594836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conserved motifs involved in ATP hydrolysis by MalT, a signal transduction ATPase with numerous domains from Escherichia coli.
    Marquenet E; Richet E
    J Bacteriol; 2010 Oct; 192(19):5181-91. PubMed ID: 20693326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular cloning of apicoplast-targeted Plasmodium falciparum DNA gyrase genes: unique intrinsic ATPase activity and ATP-independent dimerization of PfGyrB subunit.
    Dar MA; Sharma A; Mondal N; Dhar SK
    Eukaryot Cell; 2007 Mar; 6(3):398-412. PubMed ID: 17220464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A; Klostermeier D
    DNA Repair (Amst); 2014 Apr; 16():23-34. PubMed ID: 24674625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage.
    Gubaev A; Klostermeier D
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14085-90. PubMed ID: 21817063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structures of Escherichia coli topoisomerase IV ParE subunit (24 and 43 kilodaltons): a single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase.
    Bellon S; Parsons JD; Wei Y; Hayakawa K; Swenson LL; Charifson PS; Lippke JA; Aldape R; Gross CH
    Antimicrob Agents Chemother; 2004 May; 48(5):1856-64. PubMed ID: 15105144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms for defining supercoiling set point of DNA gyrase orthologs: I. A nonconserved acidic C-terminal tail modulates Escherichia coli gyrase activity.
    Tretter EM; Berger JM
    J Biol Chem; 2012 May; 287(22):18636-44. PubMed ID: 22457353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional characterisation of mycobacterial DNA gyrase: an efficient decatenase.
    Manjunatha UH; Dalal M; Chatterji M; Radha DR; Visweswariah SS; Nagaraja V
    Nucleic Acids Res; 2002 May; 30(10):2144-53. PubMed ID: 12000834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.