BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25203211)

  • 1. Structural basis for membrane binding and remodeling by the exomer secretory vesicle cargo adaptor.
    Paczkowski JE; Fromme JC
    Dev Cell; 2014 Sep; 30(5):610-24. PubMed ID: 25203211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The exomer cargo adaptor structure reveals a novel GTPase-binding domain.
    Paczkowski JE; Richardson BC; Strassner AM; Fromme JC
    EMBO J; 2012 Nov; 31(21):4191-203. PubMed ID: 23000721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Arf1 GTPase-Dependent Membrane Binding and Remodeling Using the Exomer Secretory Vesicle Cargo Adaptor.
    Paczkowski JE; Fromme JC
    Methods Mol Biol; 2016; 1496():41-53. PubMed ID: 27632000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exomer complex regulates protein traffic at the TGN through differential interactions with cargos and clathrin adaptor complexes.
    Anton-Plagaro C; Sanchez N; Valle R; Mulet JM; Duncan MC; Roncero C
    FASEB J; 2021 Jun; 35(6):e21615. PubMed ID: 33978245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis.
    Paczkowski JE; Richardson BC; Fromme JC
    Trends Cell Biol; 2015 Jul; 25(7):408-16. PubMed ID: 25795254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic assembly of the exomer secretory vesicle cargo adaptor subunits.
    Huranova M; Muruganandam G; Weiss M; Spang A
    EMBO Rep; 2016 Feb; 17(2):202-19. PubMed ID: 26742961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structure-based mechanism for Arf1-dependent recruitment of coatomer to membranes.
    Yu X; Breitman M; Goldberg J
    Cell; 2012 Feb; 148(3):530-42. PubMed ID: 22304919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The exomer cargo adaptor features a flexible hinge domain.
    Richardson BC; Fromme JC
    Structure; 2013 Mar; 21(3):486-92. PubMed ID: 23395181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The exomer coat complex transports Fus1p to the plasma membrane via a novel plasma membrane sorting signal in yeast.
    Barfield RM; Fromme JC; Schekman R
    Mol Biol Cell; 2009 Dec; 20(23):4985-96. PubMed ID: 19812245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The p24 Complex Contributes to Specify Arf1 for COPI Coat Selection.
    Sabido-Bozo S; Perez-Linero AM; Manzano-Lopez J; Rodriguez-Gallardo S; Aguilera-Romero A; Cortes-Gomez A; Lopez S; Wellinger RE; Muñiz M
    Int J Mol Sci; 2021 Jan; 22(1):. PubMed ID: 33401608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of GTP hydrolysis on ADP-ribosylation factor-1 at the Golgi membrane.
    Szafer E; Rotman M; Cassel D
    J Biol Chem; 2001 Dec; 276(51):47834-9. PubMed ID: 11592960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for activation of Arf1 at the Golgi complex.
    Muccini AJ; Gustafson MA; Fromme JC
    Cell Rep; 2022 Aug; 40(9):111282. PubMed ID: 36044848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exomer: A coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast.
    Wang CW; Hamamoto S; Orci L; Schekman R
    J Cell Biol; 2006 Sep; 174(7):973-83. PubMed ID: 17000877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct N-terminal regions of the exomer secretory vesicle cargo Chs3 regulate its trafficking itinerary.
    Weiskoff AM; Fromme JC
    Front Cell Dev Biol; 2014; 2():47. PubMed ID: 25364754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traffic Through the Trans-Golgi Network and the Endosomal System Requires Collaboration Between Exomer and Clathrin Adaptors in Fission Yeast.
    Hoya M; Yanguas F; Moro S; Prescianotto-Baschong C; Doncel C; de León N; Curto MÁ; Spang A; Valdivieso MH
    Genetics; 2017 Feb; 205(2):673-690. PubMed ID: 27974503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arf1 orchestrates Rab GTPase conversion at the
    Thomas LL; Highland CM; Fromme JC
    Mol Biol Cell; 2021 May; 32(11):1104-1120. PubMed ID: 33788577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Functional Specialization of Exomer as a Cargo Adaptor During the Evolution of Fungi.
    Anton C; Taubas JV; Roncero C
    Genetics; 2018 Apr; 208(4):1483-1498. PubMed ID: 29437703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary cell biology traces the rise of the exomer complex in Fungi from an ancient eukaryotic component.
    Ramirez-Macias I; Barlow LD; Anton C; Spang A; Roncero C; Dacks JB
    Sci Rep; 2018 Jul; 8(1):11154. PubMed ID: 30042439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ARF1.GTP, tyrosine-based signals, and phosphatidylinositol 4,5-bisphosphate constitute a minimal machinery to recruit the AP-1 clathrin adaptor to membranes.
    Crottet P; Meyer DM; Rohrer J; Spiess M
    Mol Biol Cell; 2002 Oct; 13(10):3672-82. PubMed ID: 12388765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of the exomer complex in the polarized transport of Ena1 required for
    Anton C; Zanolari B; Arcones I; Wang C; Mulet JM; Spang A; Roncero C
    Mol Biol Cell; 2017 Dec; 28(25):3672-3685. PubMed ID: 29021337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.