These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 25203398)
21. Elucidation of the 1-phenethylisoquinoline pathway from an endemic conifer Qiao F; He Y; Zhang Y; Jiang X; Cong H; Wang Z; Sun H; Xiao Y; Zhao Y; Nick P Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2209339120. PubMed ID: 36577068 [TBL] [Abstract][Full Text] [Related]
22. Characterisation, expression and functional analysis of PAL gene family in Cephalotaxus hainanensis. He Y; Zhong X; Jiang X; Cong H; Sun H; Qiao F Plant Physiol Biochem; 2020 Nov; 156():461-470. PubMed ID: 33027750 [TBL] [Abstract][Full Text] [Related]
23. De Novo RNA Sequencing and Expression Analysis of Aconitum carmichaelii to Analyze Key Genes Involved in the Biosynthesis of Diterpene Alkaloids. Rai M; Rai A; Kawano N; Yoshimatsu K; Takahashi H; Suzuki H; Kawahara N; Saito K; Yamazaki M Molecules; 2017 Dec; 22(12):. PubMed ID: 29206203 [No Abstract] [Full Text] [Related]
24. De Novo assembly of expressed transcripts and global transcriptomic analysis from seedlings of the paper mulberry (Broussonetia kazinoki x Broussonetia papyifera). Xianjun P; Linhong T; Xiaoman W; Yucheng W; Shihua S PLoS One; 2014; 9(5):e97487. PubMed ID: 24848504 [TBL] [Abstract][Full Text] [Related]
25. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis. Ma J; Kanakala S; He Y; Zhang J; Zhong X PLoS One; 2015; 10(3):e0119153. PubMed ID: 25769053 [TBL] [Abstract][Full Text] [Related]
26. De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism. Sangwan RS; Tripathi S; Singh J; Narnoliya LK; Sangwan NS Gene; 2013 Aug; 525(1):58-76. PubMed ID: 23644021 [TBL] [Abstract][Full Text] [Related]
27. De novo assembly and characterization of leaf and floral transcriptomes of the hybridizing bromeliad species (Pitcairnia spp.) adapted to Neotropical Inselbergs. Palma-Silva C; Ferro M; Bacci M; Turchetto-Zolet AC Mol Ecol Resour; 2016 Jul; 16(4):1012-22. PubMed ID: 26849180 [TBL] [Abstract][Full Text] [Related]
28. De Novo Assembly and Characterization of the Transcriptome of Grasshopper Shirakiacris shirakii. Qiu Z; Liu F; Lu H; Yuan H; Zhang Q; Huang Y Int J Mol Sci; 2016 Jul; 17(7):. PubMed ID: 27455245 [TBL] [Abstract][Full Text] [Related]
29. Transcriptome and metabolite analyses reveal the complex metabolic genes involved in volatile terpenoid biosynthesis in garden sage (Salvia officinalis). Ali M; Li P; She G; Chen D; Wan X; Zhao J Sci Rep; 2017 Nov; 7(1):16074. PubMed ID: 29167468 [TBL] [Abstract][Full Text] [Related]
30. De novo transcriptome sequencing of radish (Raphanus sativus L.) fleshy roots: analysis of major genes involved in the anthocyanin synthesis pathway. Gao J; Li WB; Liu HF; Chen FB BMC Mol Cell Biol; 2019 Oct; 20(1):45. PubMed ID: 31646986 [TBL] [Abstract][Full Text] [Related]
31. De novo characterization of the Baphicacanthus cusia(Nees) Bremek transcriptome and analysis of candidate genes involved in indican biosynthesis and metabolism. Lin W; Huang W; Ning S; Wang X; Ye Q; Wei D PLoS One; 2018; 13(7):e0199788. PubMed ID: 29975733 [TBL] [Abstract][Full Text] [Related]
32. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). Wang Z; Fang B; Chen J; Zhang X; Luo Z; Huang L; Chen X; Li Y BMC Genomics; 2010 Dec; 11():726. PubMed ID: 21182800 [TBL] [Abstract][Full Text] [Related]
33. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis. Wang G; Du X; Ji J; Guan C; Li Z; Josine TL Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268 [TBL] [Abstract][Full Text] [Related]
34. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. Shi CY; Yang H; Wei CL; Yu O; Zhang ZZ; Jiang CJ; Sun J; Li YY; Chen Q; Xia T; Wan XC BMC Genomics; 2011 Feb; 12():131. PubMed ID: 21356090 [TBL] [Abstract][Full Text] [Related]
35. De novo transcriptomic analysis to identify differentially expressed genes during the process of aerenchyma formation in Typha angustifolia leaves. Du XM; Ni XL; Ren XL; Xin GL; Jia GL; Liu HD; Liu WZ Gene; 2018 Jul; 662():66-75. PubMed ID: 29625266 [TBL] [Abstract][Full Text] [Related]
36. Use of the de novo transcriptome analysis of silver-leaf nightshade (Solanum elaeagnifolium) to identify gene expression changes associated with wounding and terpene biosynthesis. Tsaballa A; Nikolaidis A; Trikka F; Ignea C; Kampranis SC; Makris AM; Argiriou A BMC Genomics; 2015 Jul; 16(1):504. PubMed ID: 26149407 [TBL] [Abstract][Full Text] [Related]
37. Identification of candidate genes involved in wax deposition in Poa pratensis by RNA-seq. Ni Y; Guo N; Zhao Q; Guo Y BMC Genomics; 2016 Apr; 17():314. PubMed ID: 27129471 [TBL] [Abstract][Full Text] [Related]
38. De Novo Sequencing and Assembly Analysis of the Pseudostellaria heterophylla Transcriptome. Li J; Zhen W; Long D; Ding L; Gong A; Xiao C; Jiang W; Liu X; Zhou T; Huang L PLoS One; 2016; 11(10):e0164235. PubMed ID: 27764127 [TBL] [Abstract][Full Text] [Related]
39. De novo assembly and characterization of Camelina sativa transcriptome by paired-end sequencing. Liang C; Liu X; Yiu SM; Lim BL BMC Genomics; 2013 Mar; 14():146. PubMed ID: 23496985 [TBL] [Abstract][Full Text] [Related]
40. De novo sequencing analysis of the Rosa roxburghii fruit transcriptome reveals putative ascorbate biosynthetic genes and EST-SSR markers. Yan X; Zhang X; Lu M; He Y; An H Gene; 2015 Apr; 561(1):54-62. PubMed ID: 25701597 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]