BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25203459)

  • 1. Control and prediction components of movement planning in stuttering versus nonstuttering adults.
    Daliri A; Prokopenko RA; Flanagan JR; Max L
    J Speech Lang Hear Res; 2014 Dec; 57(6):2131-41. PubMed ID: 25203459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic analyses of speech, orofacial nonspeech, and finger movements in stuttering and nonstuttering adults.
    Max L; Caruso AJ; Gracco VL
    J Speech Lang Hear Res; 2003 Feb; 46(1):215-32. PubMed ID: 12647900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Afferent and efferent aspects of mandibular sensorimotor control in adults who stutter.
    Daliri A; Prokopenko RA; Max L
    J Speech Lang Hear Res; 2013 Dec; 56(6):1774-88. PubMed ID: 23816664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of auditory processing during speech movement planning is limited in adults who stutter.
    Daliri A; Max L
    Brain Lang; 2015 Apr; 143():59-68. PubMed ID: 25796060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological evidence for a general auditory prediction deficit in adults who stutter.
    Daliri A; Max L
    Brain Lang; 2015 Nov; 150():37-44. PubMed ID: 26335995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy and variability of isochronous rhythmic timing across motor systems in stuttering versus nonstuttering individuals.
    Max L; Yudman EA
    J Speech Lang Hear Res; 2003 Feb; 46(1):146-63. PubMed ID: 12647895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordination of oral and laryngeal movements in the perceptually fluent speech of adults who stutter.
    Max L; Gracco VL
    J Speech Lang Hear Res; 2005 Jun; 48(3):524-42. PubMed ID: 16197270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation between finger reaction time and voice reaction time in stuttering and nonstuttering children and adults.
    Cross DE; Luper HL
    J Speech Hear Res; 1983 Sep; 26(3):356-61. PubMed ID: 6645458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral Coefficient Analyses of Word-Initial Stop Consonant Productions Suggest Similar Anticipatory Coarticulation for Stuttering and Nonstuttering Adults.
    Maruthy S; Feng Y; Max L
    Lang Speech; 2018 Mar; 61(1):31-42. PubMed ID: 29280401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional neuroimaging of cerebellar activation during single word reading and verb generation in stuttering and nonstuttering adults.
    De Nil LF; Kroll RM; Houle S
    Neurosci Lett; 2001 Apr; 302(2-3):77-80. PubMed ID: 11290391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laryngeal and manual reaction times of stuttering and nonstuttering adults.
    Reich A; Till J; Goldsmith H
    J Speech Hear Res; 1981 Jun; 24(2):192-6. PubMed ID: 7265933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonatory and manual reaction times of stuttering and nonstuttering children.
    Till JA; Reich A; Dickey S; Seiber J
    J Speech Hear Res; 1983 Jun; 26(2):171-80. PubMed ID: 6887802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive processing load as a determinant of stuttering: summary of a research programme.
    Bosshardt HG
    Clin Linguist Phon; 2006 Jul; 20(5):371-85. PubMed ID: 16728334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When motor execution is selectively impaired: control of manipulative finger forces in amyotrophic lateral sclerosis.
    Nowak DA; Hermsdörfer J; Topka H
    Motor Control; 2003 Jul; 7(3):304-20. PubMed ID: 12893960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of simulated stuttering and prolonged speech on the neural activation patterns of stuttering and nonstuttering adults.
    De Nil LF; Beal DS; Lafaille SJ; Kroll RM; Crawley AP; Gracco VL
    Brain Lang; 2008 Nov; 107(2):114-23. PubMed ID: 18822455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuropsychological models of stuttering--I. Representation of sequential response mechanisms.
    Webster WG
    Neuropsychologia; 1985; 23(2):263-7. PubMed ID: 4000461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of threat and cognitive stress on speech motor control in people who stutter.
    Lieshout Pv; Ben-David B; Lipski M; Namasivayam A
    J Fluency Disord; 2014 Jun; 40():93-109. PubMed ID: 24929470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonword repetition and nonword reading abilities in adults who do and do not stutter.
    Sasisekaran J
    J Fluency Disord; 2013 Sep; 38(3):275-89. PubMed ID: 24238389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of cutaneous feedback for anticipatory grip force adjustments during object movements and externally imposed variation of the direction of gravity.
    Nowak DA; Glasauer S; Meyer L; Mait N; Hermsdörfer J
    Somatosens Mot Res; 2002; 19(1):49-60. PubMed ID: 11962646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transition to increased automaticity during finger sequence learning in adult males who stutter.
    Smits-Bandstra S; De Nil L; Rochon E
    J Fluency Disord; 2006; 31(1):22-42; quiz 39-40. PubMed ID: 16445973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.