These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25203497)

  • 21. Muscle activities of lower extremity and erector spinae muscles according to ankle joint position during squat exercise.
    Sung HR; Oh SJ; Ryu JN; Cha YJ
    J Back Musculoskelet Rehabil; 2021; 34(4):671-676. PubMed ID: 33843662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-varying impedance of the human ankle in the sagittal and frontal planes during straight walk and turning steps.
    Ficanha EM; Ribeiro GA; Knop L; Rastgaar M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1413-1418. PubMed ID: 28814018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compensatory strategies during walking in response to excessive muscle co-contraction at the ankle joint.
    Wang R; Gutierrez-Farewik EM
    Gait Posture; 2014 Mar; 39(3):926-32. PubMed ID: 24374063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The relationship between leg stiffness, forces and neural control of the leg musculature during the stretch-shortening cycle is dependent on the anticipation of drop height.
    Helm M; Freyler K; Waldvogel J; Gollhofer A; Ritzmann R
    Eur J Appl Physiol; 2019 Sep; 119(9):1981-1999. PubMed ID: 31367910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Architectural and functional specifics of the human triceps surae muscle in vivo and its adaptation to microgravity.
    Koryak YA
    J Appl Physiol (1985); 2019 Apr; 126(4):880-893. PubMed ID: 30571290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does chronic ankle instability influence lower extremity muscle activation of females during landing?
    Li Y; Ko J; Walker MA; Brown CN; Schmidt JD; Kim SH; Simpson KJ
    J Electromyogr Kinesiol; 2018 Feb; 38():81-87. PubMed ID: 29175719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification and Modeling of Ankle Stiffness During Standing Balance.
    Nalam V; Adjei E; Lee H
    IEEE Trans Biomed Eng; 2021 Jun; 68(6):1828-1837. PubMed ID: 32915720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ankle position and voluntary contraction alter maximal M waves in soleus and tibialis anterior.
    Frigon A; Carroll TJ; Jones KE; Zehr EP; Collins DF
    Muscle Nerve; 2007 Jun; 35(6):756-66. PubMed ID: 17295303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alteration of ankle kinematics and muscle activity during heel contact when walking with external loading.
    Yen SC; Gutierrez GM; Wang YC; Murphy P
    Eur J Appl Physiol; 2015 Aug; 115(8):1683-92. PubMed ID: 25802228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of human ankle impedance during the stance phase of walking.
    Rouse EJ; Hargrove LJ; Perreault EJ; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):870-8. PubMed ID: 24760937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Balance control under different passive contributions of the ankle extensors: quiet standing on inclined surfaces.
    Sasagawa S; Ushiyama J; Masani K; Kouzaki M; Kanehisa H
    Exp Brain Res; 2009 Jul; 196(4):537-44. PubMed ID: 19506843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aging-related cocontraction effects during ankle strategy balance recovery following tether release in women.
    Mixco A; Reynolds M; Tracy B; Reiser RF
    J Mot Behav; 2012; 44(1):1-11. PubMed ID: 22188244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences in human antagonistic ankle dorsiflexor coactivation between legs; can they explain the moment deficit in the weaker plantarflexor leg?
    Maganaris CN; Baltzopoulos V; Sargeant AJ
    Exp Physiol; 1998 Nov; 83(6):843-55. PubMed ID: 9782193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of limiting ankle-dorsiflexion range of motion on lower extremity kinematics and muscle-activation patterns during a squat.
    Macrum E; Bell DR; Boling M; Lewek M; Padua D
    J Sport Rehabil; 2012 May; 21(2):144-50. PubMed ID: 22100617
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses.
    Huang S; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):894-903. PubMed ID: 29641394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-Directional Ankle Impedance During Standing Postures.
    Ribeiro GA; Knop LN; Rastgaar M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2224-2235. PubMed ID: 32822301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Altered Neural Control Reduces Shear Forces and Ankle Impedance on a Slippery Surface.
    Whitmore MW; Hargrove LJ; Perreault EJ
    IEEE Trans Biomed Eng; 2019 Aug; 66(8):2381-2389. PubMed ID: 30582524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical Impedance of the Ankle During the Terminal Stance Phase of Walking.
    Shorter AL; Rouse EJ
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):135-143. PubMed ID: 28976318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Motor unit contributions to activation reduction and torque steadiness following active lengthening: a study of residual torque enhancement.
    Jakobi JM; Kuzyk SL; McNeil CJ; Dalton BH; Power GA
    J Neurophysiol; 2020 Jun; 123(6):2209-2216. PubMed ID: 32347154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduced lower leg muscle activity while balancing on cobblestone shaped surfaces.
    Horstmann T; Mündermann A; Rapp W
    Gait Posture; 2015 Feb; 41(2):562-7. PubMed ID: 25593008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.