These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 25203603)

  • 1. Numerical and analytical study of the impinging and bouncing phenomena of droplets on superhydrophobic surfaces with microtextured structures.
    Quan Y; Zhang LZ
    Langmuir; 2014 Oct; 30(39):11640-9. PubMed ID: 25203603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced detachment of coalescing droplets on superhydrophobic surfaces.
    Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A
    Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces.
    Hao C; Li J; Liu Y; Zhou X; Liu Y; Liu R; Che L; Zhou W; Sun D; Li L; Xu L; Wang Z
    Nat Commun; 2015 Aug; 6():7986. PubMed ID: 26250403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes.
    Kumar A; Tripathy A; Nam Y; Lee C; Sen P
    Soft Matter; 2018 Feb; 14(9):1571-1580. PubMed ID: 29355280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bouncing droplets on nonsuperhydrophobic surfaces.
    Chen L; Li Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016308. PubMed ID: 20866726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State.
    Song J; Gao M; Zhao C; Lu Y; Huang L; Liu X; Carmalt CJ; Deng X; Parkin IP
    ACS Nano; 2017 Sep; 11(9):9259-9267. PubMed ID: 28841277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Successive Rebounds of Impinging Water Droplets on Superhydrophobic Surfaces.
    Wang Y; Zhao Y; Sun L; Mehrizi AA; Lin S; Guo J; Chen L
    Langmuir; 2022 Mar; 38(12):3860-3867. PubMed ID: 35293214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Investigation of Water Droplet Impact on the Electrospun Superhydrophobic Cylindrical Glass: Contact Time, Maximum Spreading Factor, and Splash Threshold.
    Khanzadeh Borjak S; Rafee R; Valipour MS
    Langmuir; 2020 Nov; 36(45):13498-13508. PubMed ID: 33146013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplets Can Rebound toward Both Directions on Textured Surfaces with a Wettability Gradient.
    Zhang B; Lei Q; Wang Z; Zhang X
    Langmuir; 2016 Jan; 32(1):346-51. PubMed ID: 26669260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures.
    Lian Z; Xu J; Ren W; Wang Z; Yu H
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textured surfaces.
    Lee JB; Lee SH
    Langmuir; 2011 Jun; 27(11):6565-73. PubMed ID: 21539350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet impact on pillar-arrayed non-wetting surfaces.
    Wang LZ; Zhou A; Zhou JZ; Chen L; Yu YS
    Soft Matter; 2021 Jun; 17(24):5932-5940. PubMed ID: 34041518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic behavior of water droplet impact on microtextured surfaces: the effect of geometrical parameters on anisotropic wetting and the maximum spreading diameter.
    Li X; Mao L; Ma X
    Langmuir; 2013 Jan; 29(4):1129-38. PubMed ID: 23265312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing.
    Song J; Huang L; Zhao C; Wu S; Liu H; Lu Y; Deng X; Carmalt CJ; Parkin IP; Sun Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45345-45353. PubMed ID: 31651139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2009 Aug; 25(16):9208-18. PubMed ID: 19441842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio.
    Kim JH; Rothstein JP
    Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet Impact on Anisotropic Superhydrophobic Surfaces.
    Guo C; Zhao D; Sun Y; Wang M; Liu Y
    Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum Spreading and Rebound of a Droplet Impacting onto a Spherical Surface at Low Weber Numbers.
    Bordbar A; Taassob A; Khojasteh D; Marengo M; Kamali R
    Langmuir; 2018 May; 34(17):5149-5158. PubMed ID: 29633848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.