These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 25203632)

  • 1. Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Do Not Promote Functional Recovery of Pharmacologically Immunosuppressed Mice With Contusion Spinal Cord Injury.
    Pomeshchik Y; Puttonen KA; Kidin I; Ruponen M; Lehtonen S; Malm T; Åkesson E; Hovatta O; Koistinaho J
    Cell Transplant; 2015; 24(9):1799-812. PubMed ID: 25203632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.
    López-Serrano C; Torres-Espín A; Hernández J; Alvarez-Palomo AB; Requena J; Gasull X; Edel MJ; Navarro X
    Cell Transplant; 2016 Oct; 25(10):1833-1852. PubMed ID: 27075820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beneficial Effect of Human Induced Pluripotent Stem Cell-Derived Neural Precursors in Spinal Cord Injury Repair.
    Romanyuk N; Amemori T; Turnovcova K; Prochazka P; Onteniente B; Sykova E; Jendelova P
    Cell Transplant; 2015; 24(9):1781-97. PubMed ID: 25259685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-induced pluripotent stem cells generated from intervertebral disc cells improve neurologic functions in spinal cord injury.
    Oh J; Lee KI; Kim HT; You Y; Yoon DH; Song KY; Cheong E; Ha Y; Hwang DY
    Stem Cell Res Ther; 2015 Jun; 6(1):125. PubMed ID: 26104416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell therapy for spinal cord injury by using human iPSC-derived region-specific neural progenitor cells.
    Kajikawa K; Imaizumi K; Shinozaki M; Shibata S; Shindo T; Kitagawa T; Shibata R; Kamata Y; Kojima K; Nagoshi N; Matsumoto M; Nakamura M; Okano H
    Mol Brain; 2020 Sep; 13(1):120. PubMed ID: 32883317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural stem cell mediated recovery is enhanced by Chondroitinase ABC pretreatment in chronic cervical spinal cord injury.
    Suzuki H; Ahuja CS; Salewski RP; Li L; Satkunendrarajah K; Nagoshi N; Shibata S; Fehlings MG
    PLoS One; 2017; 12(8):e0182339. PubMed ID: 28771534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human neural progenitors derived from integration-free iPSCs for SCI therapy.
    Liu Y; Zheng Y; Li S; Xue H; Schmitt K; Hergenroeder GW; Wu J; Zhang Y; Kim DH; Cao Q
    Stem Cell Res; 2017 Mar; 19():55-64. PubMed ID: 28073086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord.
    Yasuda A; Tsuji O; Shibata S; Nori S; Takano M; Kobayashi Y; Takahashi Y; Fujiyoshi K; Hara CM; Miyawaki A; Okano HJ; Toyama Y; Nakamura M; Okano H
    Stem Cells; 2011 Dec; 29(12):1983-94. PubMed ID: 22028197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury.
    Kawabata S; Takano M; Numasawa-Kuroiwa Y; Itakura G; Kobayashi Y; Nishiyama Y; Sugai K; Nishimura S; Iwai H; Isoda M; Shibata S; Kohyama J; Iwanami A; Toyama Y; Matsumoto M; Nakamura M; Okano H
    Stem Cell Reports; 2016 Jan; 6(1):1-8. PubMed ID: 26724902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PSA-NCAM positive neural progenitors stably expressing BDNF promote functional recovery in a mouse model of spinal cord injury.
    Butenschön J; Zimmermann T; Schmarowski N; Nitsch R; Fackelmeier B; Friedemann K; Radyushkin K; Baumgart J; Lutz B; Leschik J
    Stem Cell Res Ther; 2016 Jan; 7():11. PubMed ID: 26762640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-Term Effects of Neural Precursor Cell Transplantation on Secondary Injury Processes and Functional Recovery after Severe Cervical Contusion-Compression Spinal Cord Injury.
    Younsi A; Zheng G; Riemann L; Scherer M; Zhang H; Tail M; Hatami M; Skutella T; Unterberg A; Zweckberger K
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iPSC Transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats.
    Chau MJ; Deveau TC; Song M; Gu X; Chen D; Wei L
    Stem Cells; 2014 Dec; 32(12):3075-87. PubMed ID: 25132189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iPSC-derived neural precursor cells: potential for cell transplantation therapy in spinal cord injury.
    Nagoshi N; Okano H
    Cell Mol Life Sci; 2018 Mar; 75(6):989-1000. PubMed ID: 28993834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. hiPSC-derived NSCs effectively promote the functional recovery of acute spinal cord injury in mice.
    Kong D; Feng B; Amponsah AE; He J; Guo R; Liu B; Du X; Liu X; Zhang S; Lv F; Ma J; Cui H
    Stem Cell Res Ther; 2021 Mar; 12(1):172. PubMed ID: 33706803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of induced pluripotent stem cell technologies in spinal cord injury.
    Nagoshi N; Okano H
    J Neurochem; 2017 Jun; 141(6):848-860. PubMed ID: 28199003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Injury.
    Kojima K; Miyoshi H; Nagoshi N; Kohyama J; Itakura G; Kawabata S; Ozaki M; Iida T; Sugai K; Ito S; Fukuzawa R; Yasutake K; Renault-Mihara F; Shibata S; Matsumoto M; Nakamura M; Okano H
    Stem Cells Transl Med; 2019 Mar; 8(3):260-270. PubMed ID: 30485733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.
    Kobayashi Y; Okada Y; Itakura G; Iwai H; Nishimura S; Yasuda A; Nori S; Hikishima K; Konomi T; Fujiyoshi K; Tsuji O; Toyama Y; Yamanaka S; Nakamura M; Okano H
    PLoS One; 2012; 7(12):e52787. PubMed ID: 23300777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord.
    Emgård M; Piao J; Aineskog H; Liu J; Calzarossa C; Odeberg J; Holmberg L; Samuelsson EB; Bezubik B; Vincent PH; Falci SP; Seiger Å; Åkesson E; Sundström E
    Exp Neurol; 2014 Mar; 253():138-45. PubMed ID: 24412492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury.
    Zweckberger K; Ahuja CS; Liu Y; Wang J; Fehlings MG
    Acta Biomater; 2016 Sep; 42():77-89. PubMed ID: 27296842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling immune rejection is a fail-safe system against potential tumorigenicity after human iPSC-derived neural stem cell transplantation.
    Itakura G; Kobayashi Y; Nishimura S; Iwai H; Takano M; Iwanami A; Toyama Y; Okano H; Nakamura M
    PLoS One; 2015; 10(2):e0116413. PubMed ID: 25706286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.