BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 25203678)

  • 1. Proteomic analysis reveals KRIT1 as a modulator for the antioxidant effects of valproic acid in human bone-marrow mesenchymal stromal cells.
    Jung KH; Han DM; Jeong SG; Choi MR; Chai YG; Cho GW
    Drug Chem Toxicol; 2015; 38(3):286-92. PubMed ID: 25203678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trichostatin A modulates intracellular reactive oxygen species through SOD2 and FOXO1 in human bone marrow-mesenchymal stem cells.
    Jeong SG; Cho GW
    Cell Biochem Funct; 2015 Jan; 33(1):37-43. PubMed ID: 25515622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KRIT1 regulates the homeostasis of intracellular reactive oxygen species.
    Goitre L; Balzac F; Degani S; Degan P; Marchi S; Pinton P; Retta SF
    PLoS One; 2010 Jul; 5(7):e11786. PubMed ID: 20668652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valproic acid promotes neuronal differentiation by induction of neuroprogenitors in human bone-marrow mesenchymal stromal cells.
    Jeong SG; Ohn T; Kim SH; Cho GW
    Neurosci Lett; 2013 Oct; 554():22-7. PubMed ID: 24021810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of valproic acid on the expression of trophic factors in human bone marrow mesenchymal stromal cells.
    Cho GW; Kang BY; Kim KS; Kim SH
    Neurosci Lett; 2012 Sep; 526(2):100-5. PubMed ID: 22917608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability.
    La Sala L; Mrakic-Sposta S; Micheloni S; Prattichizzo F; Ceriello A
    Cardiovasc Diabetol; 2018 Jul; 17(1):105. PubMed ID: 30037352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells.
    Jeong SG; Cho GW
    Biochem Biophys Res Commun; 2015 May; 460(4):971-6. PubMed ID: 25839657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of over-expression of SOD2 in bone marrow-derived mesenchymal stem cells on traumatic brain injury.
    Shi X; Bai Y; Zhang G; Liu Y; Xiao H; Liu X; Zhang W
    Cell Tissue Res; 2018 Apr; 372(1):67-75. PubMed ID: 29082445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells.
    Roubelakis MG; Pappa KI; Bitsika V; Zagoura D; Vlahou A; Papadaki HA; Antsaklis A; Anagnou NP
    Stem Cells Dev; 2007 Dec; 16(6):931-52. PubMed ID: 18047393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype.
    Zanini C; Bruno S; Mandili G; Baci D; Cerutti F; Cenacchi G; Izzi L; Camussi G; Forni M
    PLoS One; 2011; 6(12):e28175. PubMed ID: 22194812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of valproic acid on the hepatic differentiation of mesenchymal stem cells in 2D and 3D microenvironments.
    Rashid S; Qazi RE; Malick TS; Salim A; Khan I; Ilyas A; Haneef K
    Mol Cell Biochem; 2021 Feb; 476(2):909-919. PubMed ID: 33111212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salvianolic acid B protects human endothelial progenitor cells against oxidative stress-mediated dysfunction by modulating Akt/mTOR/4EBP1, p38 MAPK/ATF2, and ERK1/2 signaling pathways.
    Tang Y; Jacobi A; Vater C; Zou X; Stiehler M
    Biochem Pharmacol; 2014 Jul; 90(1):34-49. PubMed ID: 24780446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protective mechanisms of melatonin against hydrogen-peroxide-induced toxicity in human bone-marrow-derived mesenchymal stem cells.
    Mehrzadi S; Safa M; Kamrava SK; Darabi R; Hayat P; Motevalian M
    Can J Physiol Pharmacol; 2017 Jul; 95(7):773-786. PubMed ID: 28177678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of H2O2-induced cell death through FOXO1 modulation by EUK-172 in SK-N-MC cells.
    Gheysarzadeh A; Yazdanparast R
    Eur J Pharmacol; 2012 Dec; 697(1-3):47-52. PubMed ID: 23041154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TNF-α Inhibits FoxO1 by Upregulating miR-705 to Aggravate Oxidative Damage in Bone Marrow-Derived Mesenchymal Stem Cells during Osteoporosis.
    Liao L; Su X; Yang X; Hu C; Li B; Lv Y; Shuai Y; Jing H; Deng Z; Jin Y
    Stem Cells; 2016 Apr; 34(4):1054-67. PubMed ID: 26700816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome analysis of rat bone marrow mesenchymal stem cell subcultures.
    Celebi B; Elçin YM
    J Proteome Res; 2009 May; 8(5):2164-72. PubMed ID: 19323533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geraniin protects bone marrow‑derived mesenchymal stem cells against hydrogen peroxide‑induced cellular oxidative stress in vitro.
    Huang D; Yin L; Liu X; Lv B; Xie Z; Wang X; Yu B; Zhang Y
    Int J Mol Med; 2018 Feb; 41(2):739-748. PubMed ID: 29207024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome analysis of rat bone marrow mesenchymal stem cell differentiation.
    Çelebi B; Elçin AE; Elçin YM
    J Proteome Res; 2010 Oct; 9(10):5217-27. PubMed ID: 20681633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone marrow-derived mesenchymal stem cells prevent the apoptosis of neuron-like PC12 cells via erythropoietin expression.
    Mo SJ; Zhong Q; Zhou YF; Deng DB; Zhang XQ
    Neurosci Lett; 2012 Aug; 522(2):92-7. PubMed ID: 22698588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and differential proteomic analyses to identify platelet derived factors affecting ex vivo expansion of mesenchymal stromal cells.
    Kinzebach S; Dietz L; Klüter H; Thierse HJ; Bieback K
    BMC Cell Biol; 2013 Oct; 14():48. PubMed ID: 24168020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.