These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 25203687)
1. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Matsiko A; Gleeson JP; O'Brien FJ Tissue Eng Part A; 2015 Feb; 21(3-4):486-97. PubMed ID: 25203687 [TBL] [Abstract][Full Text] [Related]
2. Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures. Amann E; Wolff P; Breel E; van Griensven M; Balmayor ER Acta Biomater; 2017 Apr; 52():130-144. PubMed ID: 28131943 [TBL] [Abstract][Full Text] [Related]
3. The influence of scaffold microstructure on chondrogenic differentiation of mesenchymal stem cells. Zhang J; Wu Y; Thote T; Lee EH; Ge Z; Yang Z Biomed Mater; 2014 Jun; 9(3):035011. PubMed ID: 24818859 [TBL] [Abstract][Full Text] [Related]
4. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate. Huang Z; Nooeaid P; Kohl B; Roether JA; Schubert DW; Meier C; Boccaccini AR; Godkin O; Ertel W; Arens S; Schulze-Tanzil G Mater Sci Eng C Mater Biol Appl; 2015 May; 50():160-72. PubMed ID: 25746258 [TBL] [Abstract][Full Text] [Related]
5. Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering. Huang H; Zhang X; Hu X; Dai L; Zhu J; Man Z; Chen H; Zhou C; Ao Y Biomed Mater; 2014 Jun; 9(3):035008. PubMed ID: 24770944 [TBL] [Abstract][Full Text] [Related]
6. Chondrogenic predifferentiation of human mesenchymal stem cells in collagen type I hydrogels. Fensky F; Reichert JC; Traube A; Rackwitz L; Siebenlist S; Nöth U Biomed Tech (Berl); 2014 Oct; 59(5):375-83. PubMed ID: 24803605 [TBL] [Abstract][Full Text] [Related]
7. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Bean AC; Tuan RS Biomed Mater; 2015 Jan; 10(1):015018. PubMed ID: 25634427 [TBL] [Abstract][Full Text] [Related]
8. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. Chen G; Dong C; Yang L; Lv Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287 [TBL] [Abstract][Full Text] [Related]
9. Addition of hyaluronic acid improves cellular infiltration and promotes early-stage chondrogenesis in a collagen-based scaffold for cartilage tissue engineering. Matsiko A; Levingstone TJ; O'Brien FJ; Gleeson JP J Mech Behav Biomed Mater; 2012 Jul; 11():41-52. PubMed ID: 22658153 [TBL] [Abstract][Full Text] [Related]
10. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292 [TBL] [Abstract][Full Text] [Related]
11. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds. Sun K; Li R; Jiang W; Sun Y; Li H Biochem Biophys Res Commun; 2016 Sep; 477(4):1085-1091. PubMed ID: 27404126 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes. Jeong CG; Zhang H; Hollister SJ Acta Biomater; 2011 Feb; 7(2):505-14. PubMed ID: 20807597 [TBL] [Abstract][Full Text] [Related]
13. Designed composites for mimicking compressive mechanical properties of articular cartilage matrix. Zhu Y; Wu H; Sun S; Zhou T; Wu J; Wan Y J Mech Behav Biomed Mater; 2014 Aug; 36():32-46. PubMed ID: 24793172 [TBL] [Abstract][Full Text] [Related]
14. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing. Reed S; Lau G; Delattre B; Lopez DD; Tomsia AP; Wu BM Biofabrication; 2016 Jan; 8(1):015003. PubMed ID: 26741113 [TBL] [Abstract][Full Text] [Related]
15. Influence of stepwise chondrogenesis-mimicking 3D extracellular matrix on chondrogenic differentiation of mesenchymal stem cells. Cai R; Nakamoto T; Kawazoe N; Chen G Biomaterials; 2015 Jun; 52():199-207. PubMed ID: 25818426 [TBL] [Abstract][Full Text] [Related]
16. Follistatin-like protein 1 regulates chondrocyte proliferation and chondrogenic differentiation of mesenchymal stem cells. Chaly Y; Blair HC; Smith SM; Bushnell DS; Marinov AD; Campfield BT; Hirsch R Ann Rheum Dis; 2015 Jul; 74(7):1467-73. PubMed ID: 24641944 [TBL] [Abstract][Full Text] [Related]
17. Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. Murphy CM; Duffy GP; Schindeler A; O'brien FJ J Biomed Mater Res A; 2016 Jan; 104(1):291-304. PubMed ID: 26386362 [TBL] [Abstract][Full Text] [Related]
19. Chondrogenic differentiation of ChM-I gene transfected rat bone marrow-derived mesenchymal stem cells on 3-dimensional poly (L-lactic acid) scaffold for cartilage engineering. Xing SC; Liu Y; Feng Y; Jiang C; Hu YQ; Sun W; Wang XH; Wei ZY; Qi M; Liu J; Zhai LJ; Wang ZQ Cell Biol Int; 2015 Mar; 39(3):300-9. PubMed ID: 25319137 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering. Tang C; Xu Y; Jin C; Min BH; Li Z; Pei X; Wang L Artif Organs; 2013 Dec; 37(12):E179-90. PubMed ID: 24251792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]