These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25203982)

  • 1. A high-performance keyboard neural prosthesis enabled by task optimization.
    Nuyujukian P; Fan JM; Kao JC; Ryu SI; Shenoy KV
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):21-29. PubMed ID: 25203982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance sustaining intracortical neural prostheses.
    Nuyujukian P; Kao JC; Fan JM; Stavisky SD; Ryu SI; Shenoy KV
    J Neural Eng; 2014 Dec; 11(6):066003. PubMed ID: 25307561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A High-Performance Neural Prosthesis Incorporating Discrete State Selection With Hidden Markov Models.
    Kao JC; Nuyujukian P; Ryu SI; Shenoy KV
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):935-945. PubMed ID: 27337709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TongueWise: Tongue-computer interface software for people with tetraplegia.
    Caltenco HA; Andreasen Struijk LN; Breidegard B
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4534-7. PubMed ID: 21095789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A probabilistic algorithm for estimating the intention of computer users with movement disorders.
    Grossman AD; Sanger TD
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3605-8. PubMed ID: 18002777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human-computer interface controlled by the lip.
    José MA; de Deus Lopes R
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):302-8. PubMed ID: 25561451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DASHER--an efficient writing system for brain-computer interfaces?
    Wills SA; MacKay DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):244-6. PubMed ID: 16792304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Point-and-Click Communication by a Person With Incomplete Locked-In Syndrome.
    Bacher D; Jarosiewicz B; Masse NY; Stavisky SD; Simeral JD; Newell K; Oakley EM; Cash SS; Friehs G; Hochberg LR
    Neurorehabil Neural Repair; 2015 Jun; 29(5):462-71. PubMed ID: 25385765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard.
    Hwang HJ; Lim JH; Jung YJ; Choi H; Lee SW; Im CH
    J Neurosci Methods; 2012 Jun; 208(1):59-65. PubMed ID: 22580222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A brain-computer interface using electrocorticographic signals in humans.
    Leuthardt EC; Schalk G; Wolpaw JR; Ojemann JG; Moran DW
    J Neural Eng; 2004 Jun; 1(2):63-71. PubMed ID: 15876624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A framework for mouse and keyboard emulation in a tongue control system.
    Lund ME; Caltenco HA; Lontis ER; Christiensen HV; Bentsen B; Struijk LN
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():815-8. PubMed ID: 19964489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-computer interfaces in neurological rehabilitation.
    Daly JJ; Wolpaw JR
    Lancet Neurol; 2008 Nov; 7(11):1032-43. PubMed ID: 18835541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.
    Revechkis B; Aflalo TN; Kellis S; Pouratian N; Andersen RA
    J Neural Eng; 2014 Dec; 11(6):066014. PubMed ID: 25394419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The body-machine interface: a pathway for rehabilitation and assistance in people with movement disorders.
    Mussa-Ivaldi FA; Casadio M; Ranganathan R
    Expert Rev Med Devices; 2013 Mar; 10(2):145-7. PubMed ID: 23480080
    [No Abstract]   [Full Text] [Related]  

  • 17. Development of the input equipment for a computer using surface EMG.
    Ando K; Nagata K; Kitagawa D; Shibata N; Yamada M; Magatani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1331-4. PubMed ID: 17945635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long term, stable brain machine interface performance using local field potentials and multiunit spikes.
    Flint RD; Wright ZA; Scheid MR; Slutzky MW
    J Neural Eng; 2013 Oct; 10(5):056005. PubMed ID: 23918061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Timing of EEG-based cursor control.
    Wolpaw JR; Flotzinger D; Pfurtscheller G; McFarland DJ
    J Clin Neurophysiol; 1997 Nov; 14(6):529-38. PubMed ID: 9458060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of EOG-based communication system controlled by eight-directional eye movements.
    Yamagishi K; Hori J; Miyakawa M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2574-7. PubMed ID: 17945724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.