BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25204229)

  • 1. WW domain of BAG3 is required for the induction of autophagy in glioma cells.
    Merabova N; Sariyer IK; Saribas AS; Knezevic T; Gordon J; Turco MC; Rosati A; Weaver M; Landry J; Khalili K
    J Cell Physiol; 2015 Apr; 230(4):831-41. PubMed ID: 25204229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BAG3-dependent noncanonical autophagy induced by proteasome inhibition in HepG2 cells.
    Liu BQ; Du ZX; Zong ZH; Li C; Li N; Zhang Q; Kong DH; Wang HQ
    Autophagy; 2013 Jun; 9(6):905-16. PubMed ID: 23575457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-chaperone BAG3 enters autophagic pathway via its interaction with microtubule associated protein 1 light chain 3 beta.
    Körschgen H; Baeken M; Schmitt D; Nagel H; Behl C
    Traffic; 2023 Dec; 24(12):564-575. PubMed ID: 37654251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interference with the HSF1/HSP70/BAG3 Pathway Primes Glioma Cells to Matrix Detachment and BH3 Mimetic-Induced Apoptosis.
    Antonietti P; Linder B; Hehlgans S; Mildenberger IC; Burger MC; Fulda S; Steinbach JP; Gessler F; Rödel F; Mittelbronn M; Kögel D
    Mol Cancer Ther; 2017 Jan; 16(1):156-168. PubMed ID: 27777286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch.
    Minoia M; Boncoraglio A; Vinet J; Morelli FF; Brunsting JF; Poletti A; Krom S; Reits E; Kampinga HH; Carra S
    Autophagy; 2014 Sep; 10(9):1603-21. PubMed ID: 25046115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking BAG: The Co-Chaperone BAG3 in Health and Disease.
    Behl C
    Trends Pharmacol Sci; 2016 Aug; 37(8):672-688. PubMed ID: 27162137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BAG3 and friends: co-chaperones in selective autophagy during aging and disease.
    Behl C
    Autophagy; 2011 Jul; 7(7):795-8. PubMed ID: 21681022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BAG3 and SYNPO (synaptopodin) facilitate phospho-MAPT/Tau degradation via autophagy in neuronal processes.
    Ji C; Tang M; Zeidler C; Höhfeld J; Johnson GV
    Autophagy; 2019 Jul; 15(7):1199-1213. PubMed ID: 30744518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy.
    Hutt DM; Mishra SK; Roth DM; Larsen MB; Angles F; Frizzell RA; Balch WE
    J Biol Chem; 2018 Aug; 293(35):13682-13695. PubMed ID: 29986884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PKM2 compensates for proteasome dysfunction by mediating the formation of the CHIP-HSP70-BAG3 complex and the aggregation of ubiquitinated proteins.
    Zhang C; Tang Q; Xia H; Xu H; Bi F
    FASEB J; 2022 Jan; 36(1):e22121. PubMed ID: 34951719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling the mystery: How bad is BAG3 in hematological malignancies?
    Liu Q; Liu J; Huang X
    Biochim Biophys Acta Rev Cancer; 2022 Sep; 1877(5):188781. PubMed ID: 35985611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological inhibition of BAG3-HSP70 with the proposed cancer therapeutic JG-98 is toxic for cardiomyocytes.
    Martin TG; Delligatti CE; Muntu NA; Stachowski-Doll MJ; Kirk JA
    J Cell Biochem; 2022 Jan; 123(1):128-141. PubMed ID: 34487557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of BAG3 in cancer progression: A therapeutic opportunity.
    De Marco M; Basile A; Iorio V; Festa M; Falco A; Ranieri B; Pascale M; Sala G; Remondelli P; Capunzo M; Firpo MA; Pezzilli R; Marzullo L; Cavallo P; De Laurenzi V; Turco MC; Rosati A
    Semin Cell Dev Biol; 2018 Jun; 78():85-92. PubMed ID: 28864347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress.
    Liang J; Sagum CA; Bedford MT; Sidhu SS; Sudol M; Han Z; Harty RN
    PLoS Pathog; 2017 Jan; 13(1):e1006132. PubMed ID: 28076420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lamin B is a target for selective nuclear PQC by BAG3: implication for nuclear envelopathies.
    Gupta MK; Gordon J; Glauser GM; Myers VD; Feldman AM; Cheung JY; Khalili K
    Cell Death Dis; 2019 Jan; 10(1):23. PubMed ID: 30631036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bcl2-associated athanogene 3 interactome analysis reveals a new role in modulating proteasome activity.
    Chen Y; Yang LN; Cheng L; Tu S; Guo SJ; Le HY; Xiong Q; Mo R; Li CY; Jeong JS; Jiang L; Blackshaw S; Bi LJ; Zhu H; Tao SC; Ge F
    Mol Cell Proteomics; 2013 Oct; 12(10):2804-19. PubMed ID: 23824909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Bag3 in cell signaling.
    Sherman MY; Gabai V
    J Cell Biochem; 2022 Jan; 123(1):43-53. PubMed ID: 34297413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress.
    Chakraborty D; Felzen V; Hiebel C; Stürner E; Perumal N; Manicam C; Sehn E; Grus F; Wolfrum U; Behl C
    Redox Biol; 2019 Jun; 24():101181. PubMed ID: 30959460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardioprotection of exercise preconditioning involving heat shock protein 70 and concurrent autophagy: a potential chaperone-assisted selective macroautophagy effect.
    Yuan Y; Pan SS; Shen YJ
    J Physiol Sci; 2018 Jan; 68(1):55-67. PubMed ID: 27928720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. At the Crossroads of Apoptosis and Autophagy: Multiple Roles of the Co-Chaperone BAG3 in Stress and Therapy Resistance of Cancer.
    Kögel D; Linder B; Brunschweiger A; Chines S; Behl C
    Cells; 2020 Feb; 9(3):. PubMed ID: 32121220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.