BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

618 related articles for article (PubMed ID: 25204271)

  • 41. Bigleaf-An R package for the calculation of physical and physiological ecosystem properties from eddy covariance data.
    Knauer J; El-Madany TS; Zaehle S; Migliavacca M
    PLoS One; 2018; 13(8):e0201114. PubMed ID: 30106974
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Climatic change controls productivity variation in global grasslands.
    Gao Q; Zhu W; Schwartz MW; Ganjurjav H; Wan Y; Qin X; Ma X; Williamson MA; Li Y
    Sci Rep; 2016 May; 6():26958. PubMed ID: 27243565
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data.
    Hui D; Jackson RB
    New Phytol; 2006; 169(1):85-93. PubMed ID: 16390421
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Grassland productivity and carbon sequestration in Mongolian grasslands: The underlying mechanisms and nomadic implications.
    Shao C; Chen J; Chu H; Lafortezza R; Dong G; Abraha M; Batkhishig O; John R; Ouyang Z; Zhang Y; Qi J
    Environ Res; 2017 Nov; 159():124-134. PubMed ID: 28797887
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contrasting long-term records of biomass burning in wet and dry savannas of equatorial East Africa.
    Colombaroli D; Ssemmanda I; Gelorini V; Verschuren D
    Glob Chang Biol; 2014 Sep; 20(9):2903-14. PubMed ID: 24677504
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Disentangling the effects of climatic variability and climate extremes on the belowground biomass of C
    Hossain ML; Li J
    Sci Total Environ; 2021 Mar; 760():143894. PubMed ID: 33341628
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Understanding interactive processes: a review of CO
    da Rosa Ferraz Jardim AM; de Morais JEF; de Souza LSB; da Silva TGF
    Environ Monit Assess; 2022 Aug; 194(10):677. PubMed ID: 35974211
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of the driving forces of spring phenology among savanna landscapes by including combined spatial and temporal heterogeneity.
    Zhu L; Southworth J; Meng J
    Int J Biometeorol; 2015 Oct; 59(10):1373-84. PubMed ID: 25542243
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Beyond precipitation: physiographic gradients dictate the relative importance of environmental drivers on Savanna vegetation.
    Campo-Bescós MA; Muñoz-Carpena R; Kaplan DA; Southworth J; Zhu L; Waylen PR
    PLoS One; 2013; 8(8):e72348. PubMed ID: 24023616
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis.
    Barman R; Jain AK; Liang M
    Glob Chang Biol; 2014 May; 20(5):1394-411. PubMed ID: 24273031
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: model development and initial evaluation.
    Zhang X; Izaurralde RC; Arnold JG; Williams JR; Srinivasan R
    Sci Total Environ; 2013 Oct; 463-464():810-22. PubMed ID: 23859899
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Seasonal and interannual variations in carbon fluxes in East Asia semi-arid grasslands.
    Zhao H; Jia G; Wang H; Zhang A; Xu X
    Sci Total Environ; 2019 Jun; 668():1128-1138. PubMed ID: 31018453
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere.
    Tan J; Piao S; Chen A; Zeng Z; Ciais P; Janssens IA; Mao J; Myneni RB; Peng S; Peñuelas J; Shi X; Vicca S
    Glob Chang Biol; 2015 Jan; 21(1):377-87. PubMed ID: 25163596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem?
    Fang Q; Wang G; Xue B; Liu T; Kiem A
    Sci Total Environ; 2018 Sep; 635():1255-1266. PubMed ID: 29710579
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Dynamic assessment of grassland degradation in Naqu of northern Tibet].
    Mao F; Zhang YH; Hou YY; Tang SH; Lu ZG; Zhang JH
    Ying Yong Sheng Tai Xue Bao; 2008 Feb; 19(2):278-84. PubMed ID: 18464632
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A glimpse at short-term controls of evapotranspiration along the southern slopes of Kilimanjaro.
    Detsch F; Otte I; Appelhans T; Nauss T
    Environ Monit Assess; 2017 Aug; 189(9):465. PubMed ID: 28836041
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers.
    Mishra NB; Mainali KP
    Sci Total Environ; 2017 Jun; 587-588():326-339. PubMed ID: 28245933
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Soil water content effects on net ecosystem CO
    Meza FJ; Montes C; Bravo-Martínez F; Serrano-Ortiz P; Kowalski AS
    Sci Rep; 2018 Jun; 8(1):8570. PubMed ID: 29872104
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Water and carbon dioxide fluxes over an alpine meadow in southwest China and the impact of a spring drought event.
    Wang L; Liu H; Sun J; Feng J
    Int J Biometeorol; 2016 Feb; 60(2):195-205. PubMed ID: 26059924
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impacts of Chinese Grain for Green program and climate change on vegetation in the Loess Plateau during 1982-2015.
    Li G; Sun S; Han J; Yan J; Liu W; Wei Y; Lu N; Sun Y
    Sci Total Environ; 2019 Apr; 660():177-187. PubMed ID: 30640086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.