These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25204505)

  • 21. Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia.
    Hernández F; Portolés T; Ibáñez M; Bustos-López MC; Díaz R; Botero-Coy AM; Fuentes CL; Peñuela G
    Sci Total Environ; 2012 Nov; 439():249-59. PubMed ID: 23085466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry.
    Chiaia-Hernandez AC; Krauss M; Hollender J
    Environ Sci Technol; 2013 Jan; 47(2):976-86. PubMed ID: 23215447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and validation of a rapid and wide-scope qualitative screening method for detection and identification of organic pollutants in natural water and wastewater by gas chromatography time-of-flight mass spectrometry.
    Portolés T; Pitarch E; López FJ; Hernández F
    J Chromatogr A; 2011 Jan; 1218(2):303-15. PubMed ID: 21134677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Database-driven screening of South African surface water and the targeted detection of pharmaceuticals using liquid chromatography - High resolution mass spectrometry.
    Wood TP; Du Preez C; Steenkamp A; Duvenage C; Rohwer ER
    Environ Pollut; 2017 Nov; 230():453-462. PubMed ID: 28683392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monitoring of priority pesticides and other organic pollutants in river water from portugal by gas chromatography-mass spectrometry and liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.
    de Almeida Azevedo D; Lacorte S; Vinhas T; Viana P; Barceló D
    J Chromatogr A; 2000 May; 879(1):13-26. PubMed ID: 10870692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new analytical framework for multi-residue analysis of chemically diverse endocrine disruptors in complex environmental matrices utilising ultra-performance liquid chromatography coupled with high-resolution tandem quadrupole time-of-flight mass spectrometry.
    Lopardo L; Rydevik A; Kasprzyk-Hordern B
    Anal Bioanal Chem; 2019 Jan; 411(3):689-704. PubMed ID: 30467767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic searching and evaluation of priority and emerging contaminants in wastewater and river water by stir bar sorptive extraction followed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.
    Gómez MJ; Herrera S; Solé D; García-Calvo E; Fernández-Alba AR
    Anal Chem; 2011 Apr; 83(7):2638-47. PubMed ID: 21388147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Target and nontarget screening of organic micropollutants in water by solid-phase microextraction combined with gas chromatography/high-resolution time-of-flight mass spectrometry.
    Hernandez F; Portolés T; Pitarch E; López FJ
    Anal Chem; 2007 Dec; 79(24):9494-504. PubMed ID: 17985926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous determination of 20 trace organic chemicals in waters by solid-phase extraction (SPE) with triple-quadrupole mass spectrometer (QqQ-MS) and hybrid quadrupole Orbitrap high resolution MS (Q-Orbitrap-HRMS).
    Chen W; Huang H; Chen CE; Qi S; Price OR; Zhang H; Jones KC; Sweetman AJ
    Chemosphere; 2016 Nov; 163():99-107. PubMed ID: 27522181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of cannabis biomarkers and transformation products in waters by liquid chromatography coupled to time of flight and triple quadrupole mass spectrometry.
    Boix C; Ibáñez M; Bijlsma L; Sancho JV; Hernández F
    Chemosphere; 2014 Mar; 99():64-71. PubMed ID: 24216262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analytical improvements of hybrid LC-MS/MS techniques for the efficient evaluation of emerging contaminants in river waters: a case study of the Henares River (Madrid, Spain).
    Pérez-Parada A; Gómez-Ramos Mdel M; Martínez Bueno MJ; Uclés S; Uclés A; Fernández-Alba AR
    Environ Sci Pollut Res Int; 2012 Feb; 19(2):467-81. PubMed ID: 21822928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-residue method for the determination of over 400 priority and emerging pollutants in water and wastewater by solid-phase extraction and liquid chromatography-time-of-flight mass spectrometry.
    Robles-Molina J; Lara-Ortega FJ; Gilbert-López B; García-Reyes JF; Molina-Díaz A
    J Chromatogr A; 2014 Jul; 1350():30-43. PubMed ID: 24891157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suspect screening of natural toxins in surface and drinking water by high performance liquid chromatography and high-resolution mass spectrometry.
    Picardo M; Sanchís J; Núñez O; Farré M
    Chemosphere; 2020 Dec; 261():127888. PubMed ID: 33113669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry with electron ionization for determination of N-nitrosamines in environmental water.
    Chen W; Li X; Huang H; Zhu X; Jiang X; Zhang Y; Cen K; Zhao L; Liu X; Qi S
    Chemosphere; 2017 Feb; 168():1400-1410. PubMed ID: 27923502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous analysis of non-steroidal anti-inflammatory drugs and estrogenic hormones in water and wastewater samples using gas chromatography-mass spectrometry and gas chromatography with electron capture detection.
    Migowska N; Caban M; Stepnowski P; Kumirska J
    Sci Total Environ; 2012 Dec; 441():77-88. PubMed ID: 23137972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suspect screening of large numbers of emerging contaminants in environmental waters using artificial neural networks for chromatographic retention time prediction and high resolution mass spectrometry data analysis.
    Bade R; Bijlsma L; Miller TH; Barron LP; Sancho JV; Hernández F
    Sci Total Environ; 2015 Dec; 538():934-41. PubMed ID: 26363605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Search for over 2000 current and legacy micropollutants on a wastewater infiltration site with a UPLC-high resolution MS target screening method.
    Wode F; van Baar P; Dünnbier U; Hecht F; Taute T; Jekel M; Reemtsma T
    Water Res; 2015 Feb; 69():274-283. PubMed ID: 25497426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current use of high-resolution mass spectrometry in the environmental sciences.
    Hernández F; Sancho JV; Ibáñez M; Abad E; Portolés T; Mattioli L
    Anal Bioanal Chem; 2012 May; 403(5):1251-64. PubMed ID: 22362279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct injection analysis of polar micropollutants in natural drinking water sources with biphenyl liquid chromatography coupled to high-resolution time-of-flight mass spectrometry.
    Albergamo V; Helmus R; de Voogt P
    J Chromatogr A; 2018 Sep; 1569():53-61. PubMed ID: 30017221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gas chromatography triple quadrupole mass spectrometry method for monitoring multiclass organic pollutants in Spanish sewage treatment plants effluents.
    Robles-Molina J; Gilbert-López B; García-Reyes JF; Molina-Díaz A
    Talanta; 2013 Jul; 111():196-205. PubMed ID: 23622545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.