These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 25204655)

  • 1. Genomic heat shock element sequences drive cooperative human heat shock factor 1 DNA binding and selectivity.
    Jaeger AM; Makley LN; Gestwicki JE; Thiele DJ
    J Biol Chem; 2014 Oct; 289(44):30459-30469. PubMed ID: 25204655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae.
    Yamamoto A; Mizukami Y; Sakurai H
    J Biol Chem; 2005 Mar; 280(12):11911-9. PubMed ID: 15647283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1.
    Sakurai H; Takemori Y
    J Biol Chem; 2007 May; 282(18):13334-41. PubMed ID: 17347150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity.
    Kroeger PE; Morimoto RI
    Mol Cell Biol; 1994 Nov; 14(11):7592-603. PubMed ID: 7935474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome.
    Pincus D; Anandhakumar J; Thiru P; Guertin MJ; Erkine AM; Gross DS
    Mol Biol Cell; 2018 Dec; 29(26):3168-3182. PubMed ID: 30332327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of human heat shock factor trimerization by the linker domain.
    Liu PC; Thiele DJ
    J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements.
    Hashikawa N; Yamamoto N; Sakurai H
    J Biol Chem; 2007 Apr; 282(14):10333-40. PubMed ID: 17289668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic selection for constitutively trimerized human HSF1 mutants identifies a role for coiled-coil motifs in DNA binding.
    Neef DW; Jaeger AM; Thiele DJ
    G3 (Bethesda); 2013 Aug; 3(8):1315-24. PubMed ID: 23733891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential recognition of heat shock elements by members of the heat shock transcription factor family.
    Yamamoto N; Takemori Y; Sakurai M; Sugiyama K; Sakurai H
    FEBS J; 2009 Apr; 276(7):1962-74. PubMed ID: 19250318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AIRAP, a new human heat shock gene regulated by heat shock factor 1.
    Rossi A; Trotta E; Brandi R; Arisi I; Coccia M; Santoro MG
    J Biol Chem; 2010 Apr; 285(18):13607-15. PubMed ID: 20185824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfide exposure results in enhanced sqr transcription through upregulating the expression and activation of HSF1 in echiuran worm Urechis unicinctus.
    Liu X; Zhang Z; Ma X; Li X; Zhou D; Gao B; Bai Y
    Aquat Toxicol; 2016 Jan; 170():229-239. PubMed ID: 26675369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis.
    Chou SD; Prince T; Gong J; Calderwood SK
    PLoS One; 2012; 7(6):e39679. PubMed ID: 22768106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of the full length and mutated heat shock factor 1 in human cells.
    Herbomel G; Kloster-Landsberg M; Folco EG; Col E; Usson Y; Vourc'h C; Delon A; Souchier C
    PLoS One; 2013; 8(7):e67566. PubMed ID: 23861773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response.
    Meijering RA; Wiersma M; van Marion DM; Zhang D; Hoogstra-Berends F; Dijkhuis AJ; Schmidt M; Wieland T; Kampinga HH; Henning RH; Brundel BJ
    PLoS One; 2015; 10(7):e0133553. PubMed ID: 26193369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-type-dependent access of HSF1 and HSF4 to αB-crystallin promoter during heat shock.
    Jing Z; Gangalum RK; Lee JZ; Mock D; Bhat SP
    Cell Stress Chaperones; 2013 May; 18(3):377-87. PubMed ID: 23264262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of heat shock transcription factor 1 on global gene expression profiles in cells which induce either cytoprotective or pro-apoptotic response following hyperthermia.
    Kus-Liśkiewicz M; Polańska J; Korfanty J; Olbryt M; Vydra N; Toma A; Widłak W
    BMC Genomics; 2013 Jul; 14():456. PubMed ID: 23834426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation.
    Hashikawa N; Mizukami Y; Imazu H; Sakurai H
    J Biol Chem; 2006 Feb; 281(7):3936-42. PubMed ID: 16361698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response.
    Trinklein ND; Murray JI; Hartman SJ; Botstein D; Myers RM
    Mol Biol Cell; 2004 Mar; 15(3):1254-61. PubMed ID: 14668476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionarily conserved domain of heat shock transcription factor negatively regulates oligomerization and DNA binding.
    Ota A; Enoki Y; Yamamoto N; Sawai M; Sakurai H
    Biochim Biophys Acta; 2013 Sep; 1829(9):930-6. PubMed ID: 23567048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes.
    Gordon S; Bharadwaj S; Hnatov A; Ali A; Ovsenek N
    Dev Biol; 1997 Jan; 181(1):47-63. PubMed ID: 9015264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.