These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 25204894)

  • 1. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications.
    Zhong J; Zhang H; Sun X; Lee ST
    Adv Mater; 2014 Dec; 26(46):7786-806. PubMed ID: 25204894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ/Operando X-ray Spectroscopies for Advanced Investigation of Energy Materials.
    Dong CL; Vayssieres L
    Chemistry; 2018 Dec; 24(69):18356-18373. PubMed ID: 30300939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-edge X-ray absorption fine structure spectroscopy as a tool for investigating nanomaterials.
    Hemraj-Benny T; Banerjee S; Sambasivan S; Balasubramanian M; Fischer DA; Eres G; Puretzky AA; Geohegan DB; Lowndes DH; Han W; Misewich JA; Wong SS
    Small; 2006 Jan; 2(1):26-35. PubMed ID: 17193550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved synchrotron radiation excited optical luminescence: light-emission properties of silicon-based nanostructures.
    Sham TK; Rosenberg RA
    Chemphyschem; 2007 Dec; 8(18):2557-67. PubMed ID: 17994661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Synthesis and Structural Variation of Nanomaterials Through In Situ/Operando XAS and SAXS.
    Fang L; Seifert S; Winans RE; Li T
    Small; 2022 May; 18(19):e2106017. PubMed ID: 35142037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Element-specific characterization of transient electronic structure of solvated Fe(II) complexes with time-resolved soft X-ray absorption spectroscopy.
    Hong K; Cho H; Schoenlein RW; Kim TK; Huse N
    Acc Chem Res; 2015 Nov; 48(11):2957-66. PubMed ID: 26488127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanomaterials for advanced energy conversion and storage.
    Dai L; Chang DW; Baek JB; Lu W
    Small; 2012 Apr; 8(8):1130-66. PubMed ID: 22383334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.
    Peng F; Su Y; Zhong Y; Fan C; Lee ST; He Y
    Acc Chem Res; 2014 Feb; 47(2):612-23. PubMed ID: 24397270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-Situ/Operando X-ray Characterization of Metal Hydrides.
    Liu YS; Jeong S; White JL; Feng X; Seon Cho E; Stavila V; Allendorf MD; Urban JJ; Guo J
    Chemphyschem; 2019 May; 20(10):1261-1271. PubMed ID: 30737862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchrotron Radiation Based X-ray Absorption Spectroscopy: Fundamentals and Applications in Photocatalysis.
    Cai M; Sun S; Bao J
    Chemphyschem; 2024 May; 25(10):e202300939. PubMed ID: 38374799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-situ scanning transmission X-ray microscopy of catalytic solids and related nanomaterials.
    de Groot FM; de Smit E; van Schooneveld MM; Aramburo LR; Weckhuysen BM
    Chemphyschem; 2010 Apr; 11(5):951-62. PubMed ID: 20306509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the Interfacial Interaction in Layered-Carbon-Stabilized Iron Oxide Nanostructures: A Soft X-ray Spectroscopic Study.
    Zhang H; Liu J; Zhao G; Gao Y; Tyliszczak T; Glans PA; Guo J; Ma D; Sun XH; Zhong J
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7863-8. PubMed ID: 25839786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overview of nanoscale NEXAFS performed with soft X-ray microscopes.
    Guttmann P; Bittencourt C
    Beilstein J Nanotechnol; 2015; 6():595-604. PubMed ID: 25821700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective response of mesoporous silicon to adsorbants with nitro groups.
    McLeod JA; Kurmaev EZ; Sushko PV; Boyko TD; Levitsky IA; Moewes A
    Chemistry; 2012 Mar; 18(10):2912-22. PubMed ID: 22290810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoluminescence properties of graphene versus other carbon nanomaterials.
    Cao L; Meziani MJ; Sahu S; Sun YP
    Acc Chem Res; 2013 Jan; 46(1):171-80. PubMed ID: 23092181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of one-dimensional SiC nanostructures from a glassy buckypaper.
    Ding M; Star A
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):1928-36. PubMed ID: 23427809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on three-dimensional graphene: Synthesis, electronic and biotechnology applications-The Unknown Riddles.
    Thiyagarajan P
    IET Nanobiotechnol; 2021 Jun; 15(4):348-357. PubMed ID: 34694709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Nanomaterials and DNA: from Molecular Recognition to Applications.
    Sun H; Ren J; Qu X
    Acc Chem Res; 2016 Mar; 49(3):461-70. PubMed ID: 26907723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Description of Photodegradation Mechanisms and Structural Characteristics in Carbon@Titania Yolk-Shell Nanostructures by XAS.
    Hsu CH; Huang WH; Lin CJ; Huang CH; Chen YC; Kumar K; Lin YG; Dong CL; Wu MK; Hwang BJ; Su WN; Chen SY; Chen CL
    Small; 2023 Jan; 19(2):e2203881. PubMed ID: 36404110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.