These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
460 related articles for article (PubMed ID: 25205097)
1. Relaxed substrate specificity leads to extensive tRNA mischarging by Streptococcus pneumoniae class I and class II aminoacyl-tRNA synthetases. Shepherd J; Ibba M mBio; 2014 Sep; 5(5):e01656-14. PubMed ID: 25205097 [TBL] [Abstract][Full Text] [Related]
2. Lipid II-independent trans editing of mischarged tRNAs by the penicillin resistance factor MurM. Shepherd J; Ibba M J Biol Chem; 2013 Sep; 288(36):25915-25923. PubMed ID: 23867453 [TBL] [Abstract][Full Text] [Related]
3. Characterization of tRNA-dependent peptide bond formation by MurM in the synthesis of Streptococcus pneumoniae peptidoglycan. Lloyd AJ; Gilbey AM; Blewett AM; De Pascale G; El Zoeiby A; Levesque RC; Catherwood AC; Tomasz A; Bugg TD; Roper DI; Dowson CG J Biol Chem; 2008 Mar; 283(10):6402-17. PubMed ID: 18077448 [TBL] [Abstract][Full Text] [Related]
4. Plasticity of recognition of the 3'-end of mischarged tRNA by class I aminoacyl-tRNA synthetases. Nordin BE; Schimmel P J Biol Chem; 2002 Jun; 277(23):20510-7. PubMed ID: 11923317 [TBL] [Abstract][Full Text] [Related]
5. Conformational and chemical selection by a Danhart EM; Bakhtina M; Cantara WA; Kuzmishin AB; Ma X; Sanford BL; Vargas-Rodriguez O; Košutić M; Goto Y; Suga H; Nakanishi K; Micura R; Foster MP; Musier-Forsyth K Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6774-E6783. PubMed ID: 28768811 [TBL] [Abstract][Full Text] [Related]
6. A molecular link between cell wall biosynthesis, translation fidelity, and stringent response in Aggarwal SD; Lloyd AJ; Yerneni SS; Narciso AR; Shepherd J; Roper DI; Dowson CG; Filipe SR; Hiller NL Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33785594 [TBL] [Abstract][Full Text] [Related]
7. The tRNA A76 Hydroxyl Groups Control Partitioning of the tRNA-dependent Pre- and Post-transfer Editing Pathways in Class I tRNA Synthetase. Cvetesic N; Bilus M; Gruic-Sovulj I J Biol Chem; 2015 May; 290(22):13981-91. PubMed ID: 25873392 [TBL] [Abstract][Full Text] [Related]
8. An isolated class II aminoacyl-tRNA synthetase insertion domain is functional in amino acid editing. Wong FC; Beuning PJ; Silvers C; Musier-Forsyth K J Biol Chem; 2003 Dec; 278(52):52857-64. PubMed ID: 14530268 [TBL] [Abstract][Full Text] [Related]
9. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems. Fender A; Sissler M; Florentz C; Giegé R Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797 [TBL] [Abstract][Full Text] [Related]
10. Resampling and editing of mischarged tRNA prior to translation elongation. Ling J; So BR; Yadavalli SS; Roy H; Shoji S; Fredrick K; Musier-Forsyth K; Ibba M Mol Cell; 2009 Mar; 33(5):654-60. PubMed ID: 19285947 [TBL] [Abstract][Full Text] [Related]
11. Transfer RNA modulates the editing mechanism used by class II prolyl-tRNA synthetase. Splan KE; Ignatov ME; Musier-Forsyth K J Biol Chem; 2008 Mar; 283(11):7128-34. PubMed ID: 18180290 [TBL] [Abstract][Full Text] [Related]
12. Evolutionary Gain of Alanine Mischarging to Noncognate tRNAs with a G4:U69 Base Pair. Sun L; Gomes AC; He W; Zhou H; Wang X; Pan DW; Schimmel P; Pan T; Yang XL J Am Chem Soc; 2016 Oct; 138(39):12948-12955. PubMed ID: 27622773 [TBL] [Abstract][Full Text] [Related]
13. Quality control by trans-editing factor prevents global mistranslation of non-protein amino acid α-aminobutyrate. Bacusmo JM; Kuzmishin AB; Cantara WA; Goto Y; Suga H; Musier-Forsyth K RNA Biol; 2018; 15(4-5):576-585. PubMed ID: 28737471 [TBL] [Abstract][Full Text] [Related]
14. Negative catalysis by the editing domain of class I aminoacyl-tRNA synthetases. Zivkovic I; Ivkovic K; Cvetesic N; Marsavelski A; Gruic-Sovulj I Nucleic Acids Res; 2022 Apr; 50(7):4029-4041. PubMed ID: 35357484 [TBL] [Abstract][Full Text] [Related]
15. Cross-editing by a tRNA synthetase allows vertebrates to abundantly express mischargeable tRNA without causing mistranslation. Chen M; Kuhle B; Diedrich J; Liu Z; Moresco JJ; Yates Iii JR; Pan T; Yang XL Nucleic Acids Res; 2020 Jul; 48(12):6445-6457. PubMed ID: 32484512 [TBL] [Abstract][Full Text] [Related]
16. Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases. Dulic M; Cvetesic N; Perona JJ; Gruic-Sovulj I J Biol Chem; 2010 Jul; 285(31):23799-809. PubMed ID: 20498377 [TBL] [Abstract][Full Text] [Related]
17. Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase. Dulic M; Perona JJ; Gruic-Sovulj I Biochemistry; 2014 Oct; 53(39):6189-98. PubMed ID: 25207837 [TBL] [Abstract][Full Text] [Related]
18. An aminoacyl-tRNA synthetase with a defunct editing site. Lue SW; Kelley SO Biochemistry; 2005 Mar; 44(8):3010-6. PubMed ID: 15723544 [TBL] [Abstract][Full Text] [Related]
19. Trans-editing by aminoacyl-tRNA synthetase-like editing domains. Kuzmishin Nagy AB; Bakhtina M; Musier-Forsyth K Enzymes; 2020; 48():69-115. PubMed ID: 33837712 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of molecular recognition of tRNAs by aminoacyl-tRNA synthetases. Nureki O; Tateno M; Niimi T; Kohno T; Muramatsu T; Kanno H; Muto Y; Giege R; Yokoyama S Nucleic Acids Symp Ser; 1991; (25):165-6. PubMed ID: 1726806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]