These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Interaction of nucleic acids with carbon nanotubes and dendrimers. Nandy B; Santosh M; Maiti PK J Biosci; 2012 Jul; 37(3):457-74. PubMed ID: 22750983 [TBL] [Abstract][Full Text] [Related]
6. The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin. Ciolkowski M; Rozanek M; Bryszewska M; Klajnert B Biochim Biophys Acta; 2013 Oct; 1834(10):1982-7. PubMed ID: 23851144 [TBL] [Abstract][Full Text] [Related]
8. Complexes formed between DNA and poly(amido amine) dendrimers of different generations--modelling DNA wrapping and penetration. Qamhieh K; Nylander T; Black CF; Attard GS; Dias RS; Ainalem ML Phys Chem Chem Phys; 2014 Jul; 16(26):13112-22. PubMed ID: 24867168 [TBL] [Abstract][Full Text] [Related]
9. Electrostatic theory of the assembly of PAMAM dendrimers and DNA. Perico A Biopolymers; 2016 May; 105(5):276-86. PubMed ID: 26756793 [TBL] [Abstract][Full Text] [Related]
10. Computationally efficient methodology for atomic-level characterization of dendrimer-drug complexes: a comparison of amine- and acetyl-terminated PAMAM. Vergara-Jaque A; Comer J; Monsalve L; González-Nilo FD; Sandoval C J Phys Chem B; 2013 Jun; 117(22):6801-13. PubMed ID: 23642174 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulations of polyamidoamine dendrimers and their complexes with linear poly(ethylene oxide) at different pH conditions: static properties and hydrogen bonding. Tanis I; Karatasos K Phys Chem Chem Phys; 2009 Nov; 11(43):10017-28. PubMed ID: 19865754 [TBL] [Abstract][Full Text] [Related]
12. Poly(amidoamine)-based dendrimer/siRNA complexation studied by computer simulations: effects of pH and generation on dendrimer structure and siRNA binding. Karatasos K; Posocco P; Laurini E; Pricl S Macromol Biosci; 2012 Feb; 12(2):225-40. PubMed ID: 22147430 [TBL] [Abstract][Full Text] [Related]
13. Binding free energy calculations using MMPB/GBSA approaches for PAMAM-G4-drug complexes at neutral, basic and acid pH conditions. Martínez-Muñoz A; Bello M; Romero-Castro A; Rodríguez-Fonseca RA; Rodrigues J; Sánchez-Espinosa VA; Correa-Basurto J J Mol Graph Model; 2017 Sep; 76():330-341. PubMed ID: 28759825 [TBL] [Abstract][Full Text] [Related]
14. Polypropyleneimine and polyamidoamine dendrimer mediated enhanced solubilization of bortezomib: Comparison and evaluation of mechanistic aspects by thermodynamics and molecular simulations. Chaudhary S; Gothwal A; Khan I; Srivastava S; Malik R; Gupta U Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():611-619. PubMed ID: 28024628 [TBL] [Abstract][Full Text] [Related]
15. Fractal growth of PAMAM dendrimer aggregates and its impact on the intrinsic emission properties. Jasmine MJ; Prasad E J Phys Chem B; 2010 Jun; 114(23):7735-42. PubMed ID: 20496918 [TBL] [Abstract][Full Text] [Related]
16. Association of nicotinic acid with a poly(amidoamine) dendrimer studied by molecular dynamics simulations. Caballero J; Poblete H; Navarro C; Alzate-Morales JH J Mol Graph Model; 2013 Feb; 39():71-8. PubMed ID: 23220284 [TBL] [Abstract][Full Text] [Related]
17. Stopped-flow kinetic studies of poly(amidoamine) dendrimer-calf thymus DNA to form dendriplexes. Dey D; Kumar S; Maiti S; Dhara D J Phys Chem B; 2013 Nov; 117(44):13767-74. PubMed ID: 24087941 [TBL] [Abstract][Full Text] [Related]
18. Elucidating the molecular mechanism of PAMAM-siRNA dendriplex self-assembly: effect of dendrimer charge density. Jensen LB; Pavan GM; Kasimova MR; Rutherford S; Danani A; Nielsen HM; Foged C Int J Pharm; 2011 Sep; 416(2):410-8. PubMed ID: 21419201 [TBL] [Abstract][Full Text] [Related]