These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

618 related articles for article (PubMed ID: 25205436)

  • 1. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change.
    Valladares F; Matesanz S; Guilhaumon F; Araújo MB; Balaguer L; Benito-Garzón M; Cornwell W; Gianoli E; van Kleunen M; Naya DE; Nicotra AB; Poorter H; Zavala MA
    Ecol Lett; 2014 Nov; 17(11):1351-64. PubMed ID: 25205436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraspecific Niche Models for Ponderosa Pine (Pinus ponderosa) Suggest Potential Variability in Population-Level Response to Climate Change.
    Maguire KC; Shinneman DJ; Potter KM; Hipkins VD
    Syst Biol; 2018 Nov; 67(6):965-978. PubMed ID: 29548012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.
    Crase B; Liedloff A; Vesk PA; Fukuda Y; Wintle BA
    Glob Chang Biol; 2014 Aug; 20(8):2566-79. PubMed ID: 24845950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenological plasticity will not help all species adapt to climate change.
    Duputié A; Rutschmann A; Ronce O; Chuine I
    Glob Chang Biol; 2015 Aug; 21(8):3062-73. PubMed ID: 25752508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking of climatic niche boundaries under recent climate change.
    La Sorte FA; Jetz W
    J Anim Ecol; 2012 Jul; 81(4):914-25. PubMed ID: 22372840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetically informed ecological niche models improve climate change predictions.
    Ikeda DH; Max TL; Allan GJ; Lau MK; Shuster SM; Whitham TG
    Glob Chang Biol; 2017 Jan; 23(1):164-176. PubMed ID: 27543682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinal adaptation and adaptive plasticity in Artemisia californica: implications for the response of a foundation species to predicted climate change.
    Pratt JD; Mooney KA
    Glob Chang Biol; 2013 Aug; 19(8):2454-66. PubMed ID: 23505064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity in dendroclimatic response across the distribution range of Aleppo pine (Pinus halepensis).
    de Luis M; Čufar K; Di Filippo A; Novak K; Papadopoulos A; Piovesan G; Rathgeber CB; Raventós J; Saz MA; Smith KT
    PLoS One; 2013; 8(12):e83550. PubMed ID: 24391786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of intraspecific variation on forecasts of species range shifts under climate change.
    Song WH; Li JJ
    Sci Total Environ; 2023 Jan; 857(Pt 2):159513. PubMed ID: 36257416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How complex should models be? Comparing correlative and mechanistic range dynamics models.
    Fordham DA; Bertelsmeier C; Brook BW; Early R; Neto D; Brown SC; Ollier S; Araújo MB
    Glob Chang Biol; 2018 Mar; 24(3):1357-1370. PubMed ID: 29152817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change.
    Aspinwall MJ; Loik ME; Resco de Dios V; Tjoelker MG; Payton PR; Tissue DT
    Plant Cell Environ; 2015 Sep; 38(9):1752-64. PubMed ID: 25132508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of local adaptation and interspecific competition on species' responses to climate change.
    Bocedi G; Atkins KE; Liao J; Henry RC; Travis JM; Hellmann JJ
    Ann N Y Acad Sci; 2013 Sep; 1297():83-97. PubMed ID: 23905876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dealing with disjunct populations of vascular plants: implications for assessing the effect of climate change.
    Varaldo L; Guerrina M; Dagnino D; Minuto L; Casazza G
    Oecologia; 2023 Feb; 201(2):421-434. PubMed ID: 36738314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating population-level variation in thermal performance into predictions of geographic range shifts.
    Angert AL; Sheth SN; Paul JR
    Integr Comp Biol; 2011 Nov; 51(5):733-50. PubMed ID: 21705795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate envelope modelling reveals intraspecific relationships among flowering phenology, niche breadth and potential range size in Arabidopsis thaliana.
    Banta JA; Ehrenreich IM; Gerard S; Chou L; Wilczek A; Schmitt J; Kover PX; Purugganan MD
    Ecol Lett; 2012 Aug; 15(8):769-77. PubMed ID: 22583905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local adaptation and the evolution of species' ranges under climate change.
    Atkins KE; Travis JM
    J Theor Biol; 2010 Oct; 266(3):449-57. PubMed ID: 20654630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moving forward with species distributions.
    Feeley KJ
    Am J Bot; 2015 Feb; 102(2):173-5. PubMed ID: 25667069
    [No Abstract]   [Full Text] [Related]  

  • 18. Global change and the evolution of phenotypic plasticity in plants.
    Matesanz S; Gianoli E; Valladares F
    Ann N Y Acad Sci; 2010 Sep; 1206():35-55. PubMed ID: 20860682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of current impact of climate change on life: a walk from genes to the biosphere.
    Peñuelas J; Sardans J; Estiarte M; Ogaya R; Carnicer J; Coll M; Barbeta A; Rivas-Ubach A; Llusià J; Garbulsky M; Filella I; Jump AS
    Glob Chang Biol; 2013 Aug; 19(8):2303-38. PubMed ID: 23505157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting Darwin's hypothesis: Does greater intraspecific variability increase species' ecological breadth?
    Sides CB; Enquist BJ; Ebersole JJ; Smith MN; Henderson AN; Sloat LL
    Am J Bot; 2014 Jan; 101(1):56-62. PubMed ID: 24343815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.