These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

618 related articles for article (PubMed ID: 25205436)

  • 21. Phenotypic plasticity allows the Mediterranean parsley frog Pelodytes punctatus to exploit two temporal niches under continuous gene flow.
    Jourdan-Pineau H; David P; Crochet PA
    Mol Ecol; 2012 Feb; 21(4):876-86. PubMed ID: 22221487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elevated temperature is more effective than elevated [CO2 ] in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change.
    Huang G; Rymer PD; Duan H; Smith RA; Tissue DT
    Glob Chang Biol; 2015 Oct; 21(10):3800-13. PubMed ID: 26033432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach.
    Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR
    Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrating within-species variation in thermal physiology into climate change ecology.
    Bennett S; Duarte CM; Marbà N; Wernberg T
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180550. PubMed ID: 31203756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intraspecific genetic variation matters when predicting seagrass distribution under climate change.
    Hu ZM; Zhang QS; Zhang J; Kass JM; Mammola S; Fresia P; Draisma SGA; Assis J; Jueterbock A; Yokota M; Zhang Z
    Mol Ecol; 2021 Aug; 30(15):3840-3855. PubMed ID: 34022079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae).
    Anderson JT; Gezon ZJ
    Glob Chang Biol; 2015 Apr; 21(4):1689-703. PubMed ID: 25470363
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe.
    Wortemann R; Herbette S; Barigah TS; Fumanal B; Alia R; Ducousso A; Gomory D; Roeckel-Drevet P; Cochard H
    Tree Physiol; 2011 Nov; 31(11):1175-82. PubMed ID: 21989814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A framework for using niche models to estimate impacts of climate change on species distributions.
    Anderson RP
    Ann N Y Acad Sci; 2013 Sep; 1297():8-28. PubMed ID: 25098379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Forest tree species adaptation to climate across biomes: Building on the legacy of ecological genetics to anticipate responses to climate change.
    Leites L; Benito Garzón M
    Glob Chang Biol; 2023 Sep; 29(17):4711-4730. PubMed ID: 37029765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic data improves niche model discrimination and alters the direction and magnitude of climate change forecasts.
    Bothwell HM; Evans LM; Hersch-Green EI; Woolbright SA; Allan GJ; Whitham TG
    Ecol Appl; 2021 Apr; 31(3):e02254. PubMed ID: 33159398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Range margin populations show high climate adaptation lags in European trees.
    Fréjaville T; Vizcaíno-Palomar N; Fady B; Kremer A; Benito Garzón M
    Glob Chang Biol; 2020 Feb; 26(2):484-495. PubMed ID: 31642570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climatic adaptation and ecological divergence between two closely related pine species in Southeast China.
    Zhou Y; Zhang L; Liu J; Wu G; Savolainen O
    Mol Ecol; 2014 Jul; 23(14):3504-22. PubMed ID: 24935279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fitness declines towards range limits and local adaptation to climate affect dispersal evolution during climate-induced range shifts.
    Hargreaves AL; Bailey SF; Laird RA
    J Evol Biol; 2015 Aug; 28(8):1489-501. PubMed ID: 26079367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant population differentiation and climate change: responses of grassland species along an elevational gradient.
    Frei ER; Ghazoul J; Matter P; Heggli M; Pluess AR
    Glob Chang Biol; 2014 Feb; 20(2):441-55. PubMed ID: 24115364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution in response to climate change: in pursuit of the missing evidence.
    Merilä J
    Bioessays; 2012 Sep; 34(9):811-8. PubMed ID: 22782862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Illuminating geographical patterns in species' range shifts.
    Grenouillet G; Comte L
    Glob Chang Biol; 2014 Oct; 20(10):3080-91. PubMed ID: 24616088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ecological niche modeling of coastal dune plants and future potential distribution in response to climate change and sea level rise.
    Mendoza-González G; Martínez ML; Rojas-Soto OR; Vázquez G; Gallego-Fernández JB
    Glob Chang Biol; 2013 Aug; 19(8):2524-35. PubMed ID: 23625760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How will biotic interactions influence climate change-induced range shifts?
    HilleRisLambers J; Harsch MA; Ettinger AK; Ford KR; Theobald EJ
    Ann N Y Acad Sci; 2013 Sep; 1297():112-25. PubMed ID: 23876073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological mechanisms in coping with climate change.
    Fuller A; Dawson T; Helmuth B; Hetem RS; Mitchell D; Maloney SK
    Physiol Biochem Zool; 2010; 83(5):713-20. PubMed ID: 20578846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.