These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 25205669)

  • 1. Coding of stimulus strength via analog calcium signals in Purkinje cell dendrites of awake mice.
    Najafi F; Giovannucci A; Wang SS; Medina JF
    Elife; 2014 Sep; 3():e03663. PubMed ID: 25205669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial pattern coding of sensory information by climbing fiber-evoked calcium signals in networks of neighboring cerebellar Purkinje cells.
    Schultz SR; Kitamura K; Post-Uiterweer A; Krupic J; Häusser M
    J Neurosci; 2009 Jun; 29(25):8005-15. PubMed ID: 19553440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliable coding emerges from coactivation of climbing fibers in microbands of cerebellar Purkinje neurons.
    Ozden I; Sullivan MR; Lee HM; Wang SS
    J Neurosci; 2009 Aug; 29(34):10463-73. PubMed ID: 19710300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice.
    Ohmae S; Medina JF
    Nat Neurosci; 2015 Dec; 18(12):1798-803. PubMed ID: 26551541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Origin of Physiological Local mGluR1 Supralinear Ca
    Ait Ouares K; Canepari M
    J Neurosci; 2020 Feb; 40(9):1795-1809. PubMed ID: 31969470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission.
    Wada N; Kishimoto Y; Watanabe D; Kano M; Hirano T; Funabiki K; Nakanishi S
    Proc Natl Acad Sci U S A; 2007 Oct; 104(42):16690-5. PubMed ID: 17923666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendritic calcium signaling triggered by spontaneous and sensory-evoked climbing fiber input to cerebellar Purkinje cells in vivo.
    Kitamura K; Häusser M
    J Neurosci; 2011 Jul; 31(30):10847-58. PubMed ID: 21795537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climbing fibers provide essential instructive signals for associative learning.
    Silva NT; Ramírez-Buriticá J; Pritchett DL; Carey MR
    Nat Neurosci; 2024 May; 27(5):940-951. PubMed ID: 38565684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread state-dependent shifts in cerebellar activity in locomoting mice.
    Ozden I; Dombeck DA; Hoogland TM; Tank DW; Wang SS
    PLoS One; 2012; 7(8):e42650. PubMed ID: 22880068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prolonging the postcomplex spike pause speeds eyeblink conditioning.
    Maiz J; Karakossian MH; Pakaprot N; Robleto K; Thompson RF; Otis TS
    Proc Natl Acad Sci U S A; 2012 Oct; 109(41):16726-30. PubMed ID: 22988089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic coincidence detection in Purkinje neurons of awake mice.
    Roome CJ; Kuhn B
    Elife; 2020 Dec; 9():. PubMed ID: 33345779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendritic calcium signaling in cerebellar Purkinje cell.
    Kitamura K; Kano M
    Neural Netw; 2013 Nov; 47():11-7. PubMed ID: 22985934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct translation of climbing fiber burst-mediated sensory coding into post-synaptic Purkinje cell dendritic calcium.
    Roh SE; Kim SH; Ryu C; Kim CE; Kim YG; Worley PF; Kim SK; Kim SJ
    Elife; 2020 Sep; 9():. PubMed ID: 32985976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-dependent gating of calcium spikes by A-type K+ channels controls climbing fiber signaling in Purkinje cell dendrites.
    Otsu Y; Marcaggi P; Feltz A; Isope P; Kollo M; Nusser Z; Mathieu B; Kano M; Tsujita M; Sakimura K; Dieudonné S
    Neuron; 2014 Oct; 84(1):137-151. PubMed ID: 25220810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.
    Zagha E; Manita S; Ross WN; Rudy B
    J Neurophysiol; 2010 Jun; 103(6):3516-25. PubMed ID: 20357073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The origin of the complex spike in cerebellar Purkinje cells.
    Davie JT; Clark BA; Häusser M
    J Neurosci; 2008 Jul; 28(30):7599-609. PubMed ID: 18650337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population calcium responses of Purkinje cells in the oculomotor cerebellum driven by nonvisual input.
    Fanning AS; Shakhawat AM; Raymond JL
    J Neurophysiol; 2021 Oct; 126(4):1391-1402. PubMed ID: 34346783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dendritic excitability microzones and occluded long-term depression after classical conditioning of the rabbit's nictitating membrane response.
    Schreurs BG; Tomsic D; Gusev PA; Alkon DL
    J Neurophysiol; 1997 Jan; 77(1):86-92. PubMed ID: 9120599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system.
    De Zeeuw CI; Koekkoek SK; Wylie DR; Simpson JI
    J Neurophysiol; 1997 Apr; 77(4):1747-58. PubMed ID: 9114233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebellar climbing fibers modulate simple spikes in Purkinje cells.
    Barmack NH; Yakhnitsa V
    J Neurosci; 2003 Aug; 23(21):7904-16. PubMed ID: 12944521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.