These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25206329)

  • 21. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
    Brown AD; Tollin DJ
    J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sound-intensity-dependent compensation for the small interaural time difference cue for sound source localization.
    Nishino E; Yamada R; Kuba H; Hioki H; Furuta T; Kaneko T; Ohmori H
    J Neurosci; 2008 Jul; 28(28):7153-64. PubMed ID: 18614685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Test of the Stereausis Hypothesis for Sound Localization in Mammals.
    Plauška A; van der Heijden M; Borst JGG
    J Neurosci; 2017 Jul; 37(30):7278-7289. PubMed ID: 28659280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maps of interaural time difference in the chicken's brainstem nucleus laminaris.
    Köppl C; Carr CE
    Biol Cybern; 2008 Jun; 98(6):541-59. PubMed ID: 18491165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slowly emerging glycinergic transmission enhances inhibition in the sound localization pathway of the avian auditory system.
    Fischl MJ; Weimann SR; Kearse MG; Burger RM
    J Neurophysiol; 2014 Feb; 111(3):565-72. PubMed ID: 24198323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Role of Conduction Delay in Creating Sensitivity to Interaural Time Differences.
    Carr C; Ashida G; Wagner H; McColgan T; Kempter R
    Adv Exp Med Biol; 2016; 894():189-196. PubMed ID: 27080659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A circuit for detection of interaural time differences in the brain stem of the barn owl.
    Carr CE; Konishi M
    J Neurosci; 1990 Oct; 10(10):3227-46. PubMed ID: 2213141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural Coding of Interaural Time Differences with Bilateral Cochlear Implants in Unanesthetized Rabbits.
    Chung Y; Hancock KE; Delgutte B
    J Neurosci; 2016 May; 36(20):5520-31. PubMed ID: 27194332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coding interaural time differences at low best frequencies in the barn owl.
    Carr CE; Köppl C
    J Physiol Paris; 2004; 98(1-3):99-112. PubMed ID: 15477025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binaural response properties of low-frequency neurons in the gerbil dorsal nucleus of the lateral lemniscus.
    Siveke I; Pecka M; Seidl AH; Baudoux S; Grothe B
    J Neurophysiol; 2006 Sep; 96(3):1425-40. PubMed ID: 16571733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A circuit for coding interaural time differences in the chick brainstem.
    Overholt EM; Rubel EW; Hyson RL
    J Neurosci; 1992 May; 12(5):1698-708. PubMed ID: 1578264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptation of spike timing precision controls the sensitivity to interaural time difference in the avian auditory brainstem.
    Higgs MH; Kuznetsova MS; Spain WJ
    J Neurosci; 2012 Oct; 32(44):15489-94. PubMed ID: 23115186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1993 Jul; 70(1):64-80. PubMed ID: 8395589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Responses of auditory nerve and anteroventral cochlear nucleus fibers to broadband and narrowband noise: implications for the sensitivity to interaural delays.
    van der Heijden M; Louage DH; Joris PX
    J Assoc Res Otolaryngol; 2011 Aug; 12(4):485-502. PubMed ID: 21567250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Internally coupled middle ears enhance the range of interaural time differences heard by the chicken.
    Köppl C
    J Exp Biol; 2019 Jun; 222(Pt 12):. PubMed ID: 31138639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo Recordings from Low-Frequency Nucleus Laminaris in the Barn Owl.
    Palanca-Castan N; Köppl C
    Brain Behav Evol; 2015; 85(4):271-86. PubMed ID: 26182962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of GABAergic inhibition in processing of interaural time difference in the owl's auditory system.
    Fujita I; Konishi M
    J Neurosci; 1991 Mar; 11(3):722-39. PubMed ID: 2002359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users.
    Kan A; Litovsky RY; Goupell MJ
    Ear Hear; 2015; 36(3):e62-8. PubMed ID: 25565660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling coincidence detection in nucleus laminaris.
    Grau-Serrat V; Carr CE; Simon JZ
    Biol Cybern; 2003 Nov; 89(5):388-96. PubMed ID: 14669019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.