BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25206593)

  • 1. Changes in compressed neurons from dogs with acute and severe cauda equina constrictions following intrathecal injection of brain-derived neurotrophic factor-conjugated polymer nanoparticles.
    Tan J; Shi J; Shi G; Liu Y; Liu X; Wang C; Chen D; Xing S; Shen L; Jia L; Ye X; He H; Li J
    Neural Regen Res; 2013 Jan; 8(3):233-43. PubMed ID: 25206593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-derived neurotrophic factor is up-regulated in severe acute cauda equina syndrome dog model.
    Tan JM; Wu J; Shi JG; Shi GD; Liu YL; Liu XH; Wan CY; Chen DC; Xing SM; Shen LB; Jia LS; Ye XJ; Li JS
    Int J Clin Exp Med; 2013; 6(6):431-7. PubMed ID: 23844266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental lumbar spinal stenosis. Analysis of the cortical evoked potentials, microvasculature, and histopathology.
    Delamarter RB; Bohlman HH; Dodge LD; Biro C
    J Bone Joint Surg Am; 1990 Jan; 72(1):110-20. PubMed ID: 2295658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of cauda equina constriction on nitric oxide synthase activity.
    Lukácová N; Kafka J; Cízková D; Marsala M; Marsala J
    Neurochem Res; 2004 Feb; 29(2):429-39. PubMed ID: 15002741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Tubastatin A on the Functional Recovery of Cauda Equina Injury in Rats.
    Fu Z; Kong Q; Wu Y; Hu X; Shi J
    World Neurosurg; 2018 Jun; 114():e35-e41. PubMed ID: 29408594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental cauda equina compression induces HSP70 synthesis in dog.
    Cízková D; Lukácová N; Marsala M; Kafka J; Lukác I; Jergová S; Cízek M; Marsala J
    Physiol Res; 2005; 54(3):349-56. PubMed ID: 15974836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incipient cauda equina syndrome as a model of somatovisceral pain in dogs: spinal cord structures involved as revealed by the expression of c-fos and NADPH diaphorase activity.
    Orendácová J; Marsala M; Sulla I; Kafka J; Jalc P; Cizková D; Taira Y; Marsala J
    Neuroscience; 2000; 95(2):543-57. PubMed ID: 10658635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transplantation of neural stem cells encapsulated in hydrogels improve functional recovery in a cauda equina lesion model.
    Fu Z; Wang H; Wu Y; Zhu T
    Biosci Trends; 2020 Nov; 14(5):360-367. PubMed ID: 33100289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of Nogo-A in dorsal root ganglion in rats with cauda equina injury.
    Sun X; Kong Q; Sun K; Huan L; Xu X; Sun J; Shi J
    Biochem Biophys Res Commun; 2020 Jun; 527(1):131-137. PubMed ID: 32446356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental spinal stenosis: relationship between degree of cauda equina compression, neuropathology, and pain.
    Sekiguchi M; Kikuchi S; Myers RR
    Spine (Phila Pa 1976); 2004 May; 29(10):1105-11. PubMed ID: 15131438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroprotective Effects of Valproic Acid in a Rat Model of Cauda Equina Injury.
    Kong QJ; Wang Y; Liu Y; Sun JC; Xu XM; Sun XF; Shi JG
    World Neurosurg; 2017 Dec; 108():128-136. PubMed ID: 28867325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple protracted cauda equina constrictions cause deep derangement in the lumbosacral spinal cord circuitry in the dog.
    Marsala J; Sulla I; Jalc P; Orendacova J
    Neurosci Lett; 1995 Jun; 193(2):97-100. PubMed ID: 7478168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glial phosphorylated p38 MAP kinase mediates pain in a rat model of lumbar disc herniation and induces motor dysfunction in a rat model of lumbar spinal canal stenosis.
    Ito T; Ohtori S; Inoue G; Koshi T; Doya H; Ozawa T; Saito T; Moriya H; Takahashi K
    Spine (Phila Pa 1976); 2007 Jan; 32(2):159-67. PubMed ID: 17224809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of neonatal dorsal root ganglion-derived neural stem cells into oligodendrocytes after intrathecal transplantation into a cauda equina lesion model.
    Fu ZY; Shi JG; Liu N; Jia LS; Yuan W; Wang Y
    Genet Mol Res; 2013 Dec; 12(4):6092-102. PubMed ID: 24338403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inflammatory hypertrophic cauda equina following intrathecal neural stem cell injection.
    Hurst RW; Bosch EP; Morris JM; Dyck PJ; Reeves RK
    Muscle Nerve; 2013 Nov; 48(5):831-5. PubMed ID: 23740462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of site and type of nerve injury on the expression of brain-derived neurotrophic factor in the dorsal root ganglion and on neuropathic pain behavior.
    Obata K; Yamanaka H; Kobayashi K; Dai Y; Mizushima T; Katsura H; Fukuoka T; Tokunaga A; Noguchi K
    Neuroscience; 2006 Feb; 137(3):961-70. PubMed ID: 16326015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased resistance to acute compression injury in chronically compressed spinal nerve roots. An experimental study.
    Kikuchi S; Konno S; Kayama S; Sato K; Olmarker K
    Spine (Phila Pa 1976); 1996 Nov; 21(22):2544-50. PubMed ID: 8961441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injured primary sensory neurons switch phenotype for brain-derived neurotrophic factor in the rat.
    Zhou XF; Chie ET; Deng YS; Zhong JH; Xue Q; Rush RA; Xian CJ
    Neuroscience; 1999; 92(3):841-53. PubMed ID: 10426526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urologic function after experimental cauda equina compression. Cystometrograms versus cortical-evoked potentials.
    Delamarter RB; Bohlman HH; Bodner D; Biro C
    Spine (Phila Pa 1976); 1990 Sep; 15(9):864-70. PubMed ID: 2259971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of motor and sensory evoked potentials in chronic cauda equina compression of the dog.
    Kim NH; Yang IH
    Eur Spine J; 1996; 5(5):338-44. PubMed ID: 8915640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.