BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 25207268)

  • 41. Exploring complex cellular phenotypes and model-guided strain design with a novel genome-scale metabolic model of Clostridium thermocellum DSM 1313 implementing an adjustable cellulosome.
    Thompson RA; Dahal S; Garcia S; Nookaew I; Trinh CT
    Biotechnol Biofuels; 2016; 9(1):194. PubMed ID: 27602057
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent progress in consolidated bioprocessing.
    Olson DG; McBride JE; Shaw AJ; Lynd LR
    Curr Opin Biotechnol; 2012 Jun; 23(3):396-405. PubMed ID: 22176748
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Promiscuous plasmid replication in thermophiles: Use of a novel hyperthermophilic replicon for genetic manipulation of
    Groom J; Chung D; Olson DG; Lynd LR; Guss AM; Westpheling J
    Metab Eng Commun; 2016 Dec; 3():30-38. PubMed ID: 29468112
    [No Abstract]   [Full Text] [Related]  

  • 44. Endogenous carbohydrate esterases of Clostridium thermocellum are identified and disrupted for enhanced isobutyl acetate production from cellulose.
    Seo H; Nicely PN; Trinh CT
    Biotechnol Bioeng; 2020 Jul; 117(7):2223-2236. PubMed ID: 32333614
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol.
    Favaro L; Jooste T; Basaglia M; Rose SH; Saayman M; Görgens JF; Casella S; van Zyl WH
    Bioengineered; 2013; 4(2):97-102. PubMed ID: 22989992
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacterial production and secretion of water-insoluble fuel compounds from cellulose without the supplementation of cellulases.
    Ichikawa S; Karita S
    FEMS Microbiol Lett; 2015 Dec; 362(24):fnv202. PubMed ID: 26490947
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Laboratory Evolution and Reverse Engineering of
    Yayo J; Kuil T; Olson DG; Lynd LR; Holwerda EK; van Maris AJA
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608285
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellum to utilize hemicellulose and unpretreated plant material.
    Izquierdo JA; Pattathil S; Guseva A; Hahn MG; Lynd LR
    Biotechnol Biofuels; 2014; 7(1):136. PubMed ID: 25426163
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An integrated approach: advances in the use of Clostridium for biofuel.
    Kök MS
    Biotechnol Genet Eng Rev; 2015; 31(1-2):69-81. PubMed ID: 27160660
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering of industrially important microorganisms for assimilation of cellulosic biomass: towards consolidated bioprocessing.
    Valenzuela-Ortega M; French CE
    Biochem Soc Trans; 2019 Dec; 47(6):1781-1794. PubMed ID: 31845725
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolome Analysis of Constituents in Membrane Vesicles for
    Ichikawa S; Tsuge Y; Karita S
    Microorganisms; 2021 Mar; 9(3):. PubMed ID: 33805707
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of composition and structure of Clostridium thermocellum membranes from wild-type and ethanol-adapted strains.
    Timmons MD; Knutson BL; Nokes SE; Strobel HJ; Lynn BC
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):929-39. PubMed ID: 19221734
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization and Amelioration of Filtration Difficulties Encountered in Metabolomic Studies of Clostridium thermocellum at Elevated Sugar Concentrations.
    Sharma BD; Olson DG; Giannone RJ; Hettich RL; Lynd LR
    Appl Environ Microbiol; 2023 Apr; 89(4):e0040623. PubMed ID: 37039651
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum.
    Biswas R; Zheng T; Olson DG; Lynd LR; Guss AM
    Biotechnol Biofuels; 2015; 8():20. PubMed ID: 25763101
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single mutation at a highly conserved region of chloramphenicol acetyltransferase enables isobutyl acetate production directly from cellulose by
    Seo H; Lee JW; Garcia S; Trinh CT
    Biotechnol Biofuels; 2019; 12():245. PubMed ID: 31636704
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biocommodity Engineering.
    Lynd LR; Wyman CE; Gerngross TU
    Biotechnol Prog; 1999 Oct; 15(5):777-793. PubMed ID: 10514248
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass.
    Weimer PJ; Russell JB; Muck RE
    Bioresour Technol; 2009 Nov; 100(21):5323-31. PubMed ID: 19560344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.
    Hasunuma T; Kondo A
    Biotechnol Adv; 2012; 30(6):1207-18. PubMed ID: 22085593
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum.
    Brown SD; Guss AM; Karpinets TV; Parks JM; Smolin N; Yang S; Land ML; Klingeman DM; Bhandiwad A; Rodriguez M; Raman B; Shao X; Mielenz JR; Smith JC; Keller M; Lynd LR
    Proc Natl Acad Sci U S A; 2011 Aug; 108(33):13752-7. PubMed ID: 21825121
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers' tricks.
    Mazzoli R
    Comput Struct Biotechnol J; 2012; 3():e201210007. PubMed ID: 24688667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.