These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25207919)

  • 1. Micro- and nanostructures of photoelectrodes for solar-driven water splitting.
    Zhang P; Gao L; Song X; Sun J
    Adv Mater; 2015 Jan; 27(3):562-8. PubMed ID: 25207919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational Design of Photoelectrodes with Rapid Charge Transport for Photoelectrochemical Applications.
    Sheng X; Xu T; Feng X
    Adv Mater; 2019 Mar; 31(11):e1805132. PubMed ID: 30637813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting.
    Wang S; Liu G; Wang L
    Chem Rev; 2019 Apr; 119(8):5192-5247. PubMed ID: 30875200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast carrier dynamics in nanostructures for solar fuels.
    Baxter JB; Richter C; Schmuttenmaer CA
    Annu Rev Phys Chem; 2014; 65():423-47. PubMed ID: 24423371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting.
    Osterloh FE
    Chem Soc Rev; 2013 Mar; 42(6):2294-320. PubMed ID: 23072874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface, Bulk, and Interface: Rational Design of Hematite Architecture toward Efficient Photo-Electrochemical Water Splitting.
    Li C; Luo Z; Wang T; Gong J
    Adv Mater; 2018 Jul; 30(30):e1707502. PubMed ID: 29750372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices.
    Leung SF; Zhang Q; Tavakoli MM; He J; Mo X; Fan Z
    Small; 2016 May; 12(19):2536-48. PubMed ID: 26918386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Microwave Annealing Synthesizes Highly Crystalline Nanostructures for (Photo)electrocatalytic Water Splitting.
    Zhang H; Lee JS
    Acc Chem Res; 2019 Nov; 52(11):3132-3142. PubMed ID: 31603645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis.
    Dogutan DK; Nocera DG
    Acc Chem Res; 2019 Nov; 52(11):3143-3148. PubMed ID: 31593438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting.
    Liu C; Tang J; Chen HM; Liu B; Yang P
    Nano Lett; 2013 Jun; 13(6):2989-92. PubMed ID: 23647159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems.
    Chen X; Zhang Z; Chi L; Nair AK; Shangguan W; Jiang Z
    Nanomicro Lett; 2016; 8(1):1-12. PubMed ID: 30464988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deliberate Design of TiO2 Nanostructures towards Superior Photovoltaic Cells.
    Sun Z; Liao T; Sheng L; Kou L; Kim JH; Dou SX
    Chemistry; 2016 Aug; 22(32):11357-64. PubMed ID: 27381513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting.
    Hernández S; Hidalgo D; Sacco A; Chiodoni A; Lamberti A; Cauda V; Tresso E; Saracco G
    Phys Chem Chem Phys; 2015 Mar; 17(12):7775-86. PubMed ID: 25715190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FeVO
    Chang S; Wang M; Wang CC; Fu X; Bi H; Zeng Q
    ChemSusChem; 2021 Jul; 14(14):3010-3017. PubMed ID: 34105262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design Guidelines for High-Performance Particle-Based Photoanodes for Water Splitting: Lanthanum Titanium Oxynitride as a Model.
    Landsmann S; Maegli AE; Trottmann M; Battaglia C; Weidenkaff A; Pokrant S
    ChemSusChem; 2015 Oct; 8(20):3451-8. PubMed ID: 26360811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elaborately Modified BiVO
    Kim JH; Lee JS
    Adv Mater; 2019 May; 31(20):e1806938. PubMed ID: 30793384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological components and bioelectronic interfaces of water splitting photoelectrodes for solar hydrogen production.
    Braun A; Boudoire F; Bora DK; Faccio G; Hu Y; Kroll A; Mun BS; Wilson ST
    Chemistry; 2015 Mar; 21(11):4188-99. PubMed ID: 25504590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branched ZnO nanostructures as building blocks of photoelectrodes for efficient solar energy conversion.
    Chen W; Qiu Y; Yang S
    Phys Chem Chem Phys; 2012 Aug; 14(31):10872-81. PubMed ID: 22772813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.