BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 25207956)

  • 1. Reducing the cost of Ca-based direct air capture of CO2.
    Zeman F
    Environ Sci Technol; 2014 Oct; 48(19):11730-5. PubMed ID: 25207956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electricity from fossil fuels without CO2 emissions: assessing the costs of carbon dioxide capture and sequestration in U.S. electricity markets.
    Johnson TL; Keith DW
    J Air Waste Manag Assoc; 2001 Oct; 51(10):1452-9. PubMed ID: 11686250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dioxide capture from atmospheric air using sodium hydroxide spray.
    Stolaroff JK; Keith DW; Lowry GV
    Environ Sci Technol; 2008 Apr; 42(8):2728-35. PubMed ID: 18497115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.
    Gadalla MA; Olujic Z; Jansens PJ; Jobson M; Smith R
    Environ Sci Technol; 2005 Sep; 39(17):6860-70. PubMed ID: 16190250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The urgency of the development of CO2 capture from ambient air.
    Lackner KS; Brennan S; Matter JM; Park AH; Wright A; van der Zwaan B
    Proc Natl Acad Sci U S A; 2012 Aug; 109(33):13156-62. PubMed ID: 22843674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Costs for integrating wind into the future ERCOT system with related costs for savings in CO2 emissions.
    Lu X; McElroy MB; Sluzas NA
    Environ Sci Technol; 2011 Apr; 45(7):3160-6. PubMed ID: 21375280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control.
    Rao AB; Rubin ES
    Environ Sci Technol; 2002 Oct; 36(20):4467-75. PubMed ID: 12387425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are renewables portfolio standards cost-effective emission abatement policy?
    Dobesova K; Apt J; Lave LB
    Environ Sci Technol; 2005 Nov; 39(22):8578-83. PubMed ID: 16323750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing adsorption and membrane separation processes for the gigaton carbon capture challenge.
    Wilcox J; Haghpanah R; Rupp EC; He J; Lee K
    Annu Rev Chem Biomol Eng; 2014; 5():479-505. PubMed ID: 24702296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.
    Supekar SD; Skerlos SJ
    Environ Sci Technol; 2015 Oct; 49(20):12576-84. PubMed ID: 26422409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target.
    Tong D; Zhang Q; Zheng Y; Caldeira K; Shearer C; Hong C; Qin Y; Davis SJ
    Nature; 2019 Aug; 572(7769):373-377. PubMed ID: 31261374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of the recent reductions in natural gas prices for emissions of CO2 from the US power sector.
    Lu X; Salovaara J; McElroy MB
    Environ Sci Technol; 2012 Mar; 46(5):3014-21. PubMed ID: 22321206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of potential carbon dioxide reductions due to biomass-coal cofiring in the United States.
    Robinson AL; Rhodes JS; Keith DW
    Environ Sci Technol; 2003 Nov; 37(22):5081-9. PubMed ID: 14655692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opportunity for offshore wind to reduce future demand for coal-fired power plants in China with consequent savings in emissions of CO2.
    Lu X; McElroy MB; Chen X; Kang C
    Environ Sci Technol; 2014 Dec; 48(24):14764-71. PubMed ID: 25409413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-location of air capture, subseafloor CO2 sequestration, and energy production on the Kerguelen plateau.
    Goldberg DS; Lackner KS; Han P; Slagle AL; Wang T
    Environ Sci Technol; 2013 Jul; 47(13):7521-9. PubMed ID: 23745611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy and material balance of CO2 capture from ambient air.
    Zeman F
    Environ Sci Technol; 2007 Nov; 41(21):7558-63. PubMed ID: 18044541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The environmental and economic sustainability of carbon capture and storage.
    Hardisty PE; Sivapalan M; Brooks P
    Int J Environ Res Public Health; 2011 May; 8(5):1460-77. PubMed ID: 21655130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cost Analysis of Carbon Capture and Sequestration from U.S. Natural Gas-Fired Power Plants.
    Psarras P; He J; Pilorgé H; McQueen N; Jensen-Fellows A; Kian K; Wilcox J
    Environ Sci Technol; 2020 May; 54(10):6272-6280. PubMed ID: 32329614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.