BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25208015)

  • 1. Errors in measurements of 222Rn in methane and carbon dioxide using scintillation cells calibrated for 222Rn in air.
    Jenkins PH; Burkhart JF; Camley RE
    Health Phys; 2014 Mar; 106(3):397-404. PubMed ID: 25208015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radon measurement of natural gas using alpha scintillation cells.
    Kitto ME; Torres MA; Haines DK; Semkow TM
    J Environ Radioact; 2014 Dec; 138():205-7. PubMed ID: 25261866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Comparative analysis of two diffusion methods for radon Rn-222 estimation in atmospheric air by means of gamma ray spectrometry and liquid scintillation counting].
    Gorzkowski B; Pachocki K; Peńsko J; Majle T; Rózycki Z
    Rocz Panstw Zakl Hig; 1995; 46(1):71-80. PubMed ID: 7481507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous measurement of Rn and its progeny in cave air by liquid scintillation techniques and alpha-ray spectrometry.
    Amano H; Kasai A; Matsunaga T
    Health Phys; 1985 Sep; 49(3):509-11. PubMed ID: 2993199
    [No Abstract]   [Full Text] [Related]  

  • 5. A theoretical study on accurate measurements of thoron with airflow-through scintillation cell method.
    Tang F; Zhuo W; Zhao C; Chen B; Xu Y; He L
    Radiat Prot Dosimetry; 2010 Oct; 141(4):448-51. PubMed ID: 20876070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-sensitivity method for the measurement of 222Rn based on liquid scintillation counting of polycarbonate powder.
    Mitev K; Georgiev S; Pressyanov D; Dimitrova I; Zhivkova V; Boshkova T
    Radiat Prot Dosimetry; 2014 Jul; 160(1-3):188-91. PubMed ID: 24723190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmentally Friendly Measurement of Airborne Radon Using a Nonvolatile Liquid Scintillation Absorbent.
    Kato T; Janik M; Kanda R; Ishikawa T; Kawase M; Kawamoto T
    Health Phys; 2018 Aug; 115(2):203-211. PubMed ID: 29957685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of disequilibrium between 220Rn and 216Po for 220Rn measurements using a flow-through Lucas scintillation cell.
    Sathyabama N; Datta D; Gaware JJ; Mayya YS; Tripathi RM
    Radiat Prot Dosimetry; 2014 Jan; 158(2):187-94. PubMed ID: 23980251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Method of measurement of air concentration of Rn-222 by means of scintillation chambers].
    Chruścielewski W; Swiatnicki G; Domański T
    Med Pr; 1980; 31(2):83-9. PubMed ID: 7421568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indoor radon (222Rn) concentration measurements in Cyprus using high-sensitivity portable detectors.
    Anastasiou T; Tsertos H; Christofides S; Christodoulides G
    J Environ Radioact; 2003; 68(2):159-69. PubMed ID: 12763326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of (222)Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China.
    Song G; Wang X; Chen D; Chen Y
    J Environ Radioact; 2011 Apr; 102(4):400-6. PubMed ID: 21382658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimal measuring timetable for thoron measurements by using Lucas scintillation cell.
    Zhao C; Zhuo W; Chen B
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):125-9. PubMed ID: 22923247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An activated charcoal-based, liquid scintillation-analyzed airborne Rn detector.
    Schroeder MC; Vanags U; Hess CT
    Health Phys; 1989 Jul; 57(1):43-9. PubMed ID: 2745096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for the determination of thoron and thoron progeny concentration at workplaces and thoron concentration in calibration chambers.
    Falk R; Akerblom G; Nyblom L
    Radiat Prot Dosimetry; 2008; 131(4):444-8. PubMed ID: 18718963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the charged fractions of 218Po and 214Pb using an environmental gamma-ray and Rn detector.
    Maiello ML; Harley NH
    Health Phys; 1989 Jul; 57(1):51-9. PubMed ID: 2745097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of thoron gas in the environment using a Lucas scintillation cell.
    Zhang L; Wu J; Guo Q; Zhuo W
    J Radiol Prot; 2010 Sep; 30(3):597-605. PubMed ID: 20826886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of LSC and TLD methods for the measurement of radon and thoron decay products in air.
    Chalupnik S; Meisenberg O; Bi L; Wang J; Skubacz K; Tschiersch J
    Radiat Prot Dosimetry; 2010 Oct; 141(4):390-4. PubMed ID: 20864508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [First universal radon measuring device for balneology: field measurements of radon-222 in water, air and radon decay products in air with the alpha alpha scintillometer AlphaSzint GBH 2002].
    Sansoni B; Heger W
    Schriftenr Ver Wasser Boden Lufthyg; 1997; 101():161-4. PubMed ID: 9476299
    [No Abstract]   [Full Text] [Related]  

  • 19. New study on the correlation between carbon dioxide concentration in the environment and radon monitor devices.
    Shahrokhi A; Burghele BD; Fábián F; Kovács T
    J Environ Radioact; 2015 Dec; 150():57-61. PubMed ID: 26281966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SOIL 222Rn CONCENTRATION, CO2 AND CH4 FLUX MEASUREMENTS AROUND THE JWALAMUKHI AREA OF NORTH-WEST HIMALAYAS, INDIA.
    Kumar A; Walia V; Yang TF; Fu CC; Singh S; Bajwa BS; Arora V
    Radiat Prot Dosimetry; 2016 Oct; 171(2):262-266. PubMed ID: 27056140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.