These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2121 related articles for article (PubMed ID: 25208098)
1. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo. Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098 [TBL] [Abstract][Full Text] [Related]
2. Well-Defined Redox-Sensitive Polyethene Glycol-Paclitaxel Prodrug Conjugate for Tumor-Specific Delivery of Paclitaxel Using Octreotide for Tumor Targeting. Yin T; Wu Q; Wang L; Yin L; Zhou J; Huo M Mol Pharm; 2015 Aug; 12(8):3020-31. PubMed ID: 26086430 [TBL] [Abstract][Full Text] [Related]
3. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Song N; Liu W; Tu Q; Liu R; Zhang Y; Wang J Colloids Surf B Biointerfaces; 2011 Oct; 87(2):454-63. PubMed ID: 21719259 [TBL] [Abstract][Full Text] [Related]
4. Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: preparation and comparison with other paclitaxel systems in vitro and in vivo. Lu J; Chuan X; Zhang H; Dai W; Wang X; Wang X; Zhang Q Int J Pharm; 2014 Aug; 471(1-2):525-35. PubMed ID: 24858391 [TBL] [Abstract][Full Text] [Related]
5. Acetal-linked PEGylated paclitaxel prodrugs forming free-paclitaxel-loaded pH-responsive micelles with high drug loading capacity and improved drug delivery. Huang D; Zhuang Y; Shen H; Yang F; Wang X; Wu D Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():60-68. PubMed ID: 29025675 [TBL] [Abstract][Full Text] [Related]
6. Development of a novel biocompatible poly(ethylene glycol)-block-poly(γ-cholesterol-L-glutamate) as hydrophobic drug carrier. Ma Q; Li B; Yu Y; Zhang Y; Wu Y; Ren W; Zheng Y; He J; Xie Y; Song X; He G Int J Pharm; 2013 Mar; 445(1-2):88-92. PubMed ID: 23376505 [TBL] [Abstract][Full Text] [Related]
7. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. Yang X; Cai X; Yu A; Xi Y; Zhai G J Colloid Interface Sci; 2017 Jun; 496():311-326. PubMed ID: 28237749 [TBL] [Abstract][Full Text] [Related]
8. Graft copolymer nanoparticles with pH and reduction dual-induced disassemblable property for enhanced intracellular curcumin release. Zhao J; Liu J; Xu S; Zhou J; Han S; Deng L; Zhang J; Liu J; Meng A; Dong A ACS Appl Mater Interfaces; 2013 Dec; 5(24):13216-26. PubMed ID: 24313273 [TBL] [Abstract][Full Text] [Related]
9. Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. Lv S; Tang Z; Zhang D; Song W; Li M; Lin J; Liu H; Chen X J Control Release; 2014 Nov; 194():220-7. PubMed ID: 25220162 [TBL] [Abstract][Full Text] [Related]
10. Redox-sensitive carrier-free nanoparticles self-assembled by disulfide-linked paclitaxel-tetramethylpyrazine conjugate for combination cancer chemotherapy. Zou L; Liu X; Li J; Li W; Zhang L; Fu C; Zhang J; Gu Z Theranostics; 2021; 11(9):4171-4186. PubMed ID: 33754055 [No Abstract] [Full Text] [Related]
11. Enhanced antitumor efficacy by d-glucosamine-functionalized and paclitaxel-loaded poly(ethylene glycol)-co-poly(trimethylene carbonate) polymer nanoparticles. Jiang X; Xin H; Gu J; Du F; Feng C; Xie Y; Fang X J Pharm Sci; 2014 May; 103(5):1487-96. PubMed ID: 24619482 [TBL] [Abstract][Full Text] [Related]
12. PEGylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel for the treatment of advanced glioma: in vitro and in vivo evaluation. Jiang X; Xin H; Sha X; Gu J; Jiang Y; Law K; Chen Y; Chen L; Wang X; Fang X Int J Pharm; 2011 Nov; 420(2):385-94. PubMed ID: 21920419 [TBL] [Abstract][Full Text] [Related]
13. Paclitaxel-loaded PCL-TPGS nanoparticles: in vitro and in vivo performance compared with Abraxane®. Bernabeu E; Helguera G; Legaspi MJ; Gonzalez L; Hocht C; Taira C; Chiappetta DA Colloids Surf B Biointerfaces; 2014 Jan; 113():43-50. PubMed ID: 24060929 [TBL] [Abstract][Full Text] [Related]
14. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery. Zhang L; Zhu D; Dong X; Sun H; Song C; Wang C; Kong D Int J Nanomedicine; 2015; 10():2101-14. PubMed ID: 25844039 [TBL] [Abstract][Full Text] [Related]
15. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. Danhier F; Lecouturier N; Vroman B; Jérôme C; Marchand-Brynaert J; Feron O; Préat V J Control Release; 2009 Jan; 133(1):11-7. PubMed ID: 18950666 [TBL] [Abstract][Full Text] [Related]
16. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Li J; Huo M; Wang J; Zhou J; Mohammad JM; Zhang Y; Zhu Q; Waddad AY; Zhang Q Biomaterials; 2012 Mar; 33(7):2310-20. PubMed ID: 22166223 [TBL] [Abstract][Full Text] [Related]
17. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid. Yin S; Huai J; Chen X; Yang Y; Zhang X; Gan Y; Wang G; Gu X; Li J Acta Biomater; 2015 Oct; 26():274-85. PubMed ID: 26300335 [TBL] [Abstract][Full Text] [Related]
18. A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: preparation, in vitro and in vivo evaluation. Li Q; Lv S; Tang Z; Liu M; Zhang D; Yang Y; Chen X Int J Pharm; 2014 Aug; 471(1-2):412-20. PubMed ID: 24905776 [TBL] [Abstract][Full Text] [Related]
19. Paclitaxel-loaded Pluronic nanoparticles formed by a temperature-induced phase transition for cancer therapy. Oh KS; Song JY; Cho SH; Lee BS; Kim SY; Kim K; Jeon H; Kwon IC; Yuk SH J Control Release; 2010 Dec; 148(3):344-50. PubMed ID: 20797418 [TBL] [Abstract][Full Text] [Related]
20. α-Amylase- and Redox-Responsive Nanoparticles for Tumor-Targeted Drug Delivery. Li Y; Hu H; Zhou Q; Ao Y; Xiao C; Wan J; Wan Y; Xu H; Li Z; Yang X ACS Appl Mater Interfaces; 2017 Jun; 9(22):19215-19230. PubMed ID: 28513132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]