These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 25208130)

  • 1. Open-access optical microcavities for lab-on-a-chip refractive index sensing.
    Trichet AA; Foster J; Omori NE; James D; Dolan PR; Hughes GM; Vallance C; Smith JM
    Lab Chip; 2014 Nov; 14(21):4244-9. PubMed ID: 25208130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications.
    Harazim SM; Bolaños Quiñones VA; Kiravittaya S; Sanchez S; Schmidt OG
    Lab Chip; 2012 Aug; 12(15):2649-55. PubMed ID: 22739437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization.
    Li Y; Fang Y; Wang J; Wang L; Tang S; Jiang C; Zheng L; Mei Y
    Lab Chip; 2016 Nov; 16(22):4406-4414. PubMed ID: 27752686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities.
    Zhang X; Zhou G; Shi P; Du H; Lin T; Teng J; Chau FS
    Opt Lett; 2016 Mar; 41(6):1197-200. PubMed ID: 26977668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Peak tracking chip" for label-free optical detection of bio-molecular interaction and bulk sensing.
    Bougot-Robin K; Li S; Zhang Y; Hsing IM; Benisty H; Wen W
    Analyst; 2012 Oct; 137(20):4785-94. PubMed ID: 22930166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip integrated differential optical microring refractive index sensing platform based on a laminar flow scheme.
    Kim D; Popescu P; Harfouche M; Sendowski J; Dimotsantou ME; Flagan RC; Yariv A
    Opt Lett; 2015 Sep; 40(17):4106-9. PubMed ID: 26368723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical-assisted femtosecond laser writing of lab-in-fibers.
    Haque M; Lee KK; Ho S; Fernandes LA; Herman PR
    Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Open-access microcavities for chemical sensing.
    Vallance C; Trichet AA; James D; Dolan PR; Smith JM
    Nanotechnology; 2016 Jul; 27(27):274003. PubMed ID: 27242174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications.
    Huang G; Bolaños Quiñones VA; Ding F; Kiravittaya S; Mei Y; Schmidt OG
    ACS Nano; 2010 Jun; 4(6):3123-30. PubMed ID: 20527797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing.
    Cervantes Tellez GA; Hassan S; Tait RN; Berini P; Gordon R
    Lab Chip; 2013 Jul; 13(13):2541-6. PubMed ID: 23478567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface.
    Hu J; Lang T; Shi GH
    Opt Express; 2017 Jun; 25(13):15241-15251. PubMed ID: 28788953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtoliter-scale optical nanofiber sensors.
    Zhang L; Li Z; Mu J; Fang W; Tong L
    Opt Express; 2015 Nov; 23(22):28408-15. PubMed ID: 26561111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities.
    Wang W; Zhou C; Zhang T; Chen J; Liu S; Fan X
    Lab Chip; 2015 Oct; 15(19):3862-9. PubMed ID: 26304622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-fidelity optofluidic on-chip sensors using well-defined gold nanowell crystals.
    Lee SY; Kim SH; Jang SG; Heo CJ; Shim JW; Yang SM
    Anal Chem; 2011 Dec; 83(23):9174-80. PubMed ID: 22017272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated refractive index optical ring resonator detector for capillary electrophoresis.
    Zhu H; White IM; Suter JD; Zourob M; Fan X
    Anal Chem; 2007 Feb; 79(3):930-7. PubMed ID: 17263318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.
    Bitarafan MH; DeCorby RG
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28758967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid sensing capability of rolled-up tubular optical microcavities: a theoretical study.
    Zhao F; Zhan T; Huang G; Mei Y; Hu X
    Lab Chip; 2012 Oct; 12(19):3798-802. PubMed ID: 22878277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3D-cascade-microlens optofluidic chip for refractometry with adjustable sensitivity.
    Tang J; Qiu G; Zhang X; Wang J
    Lab Chip; 2021 Sep; 21(19):3784-3792. PubMed ID: 34581391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of interdome spacing on the resonance properties of plasmonic nanodome arrays for label-free optical sensing.
    Choi CJ; Semancik S
    Opt Express; 2013 Nov; 21(23):28304-13. PubMed ID: 24514341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly compact refractive index sensor based on stripe waveguides for lab-on-a-chip sensing applications.
    Perera C; Vernon K; Cheng E; Sathian J; Jaatinen E; Davis T
    Beilstein J Nanotechnol; 2016; 7():751-7. PubMed ID: 27335763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.