These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 25208488)
1. Fourier transform infrared spectroscopy for the prediction of fatty acid profiles in Mucor fungi grown in media with different carbon sources. Shapaval V; Afseth NK; Vogt G; Kohler A Microb Cell Fact; 2014 Sep; 13(1):86. PubMed ID: 25208488 [TBL] [Abstract][Full Text] [Related]
2. Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Kosa G; Kohler A; Tafintseva V; Zimmermann B; Forfang K; Afseth NK; Tzimorotas D; Vuoristo KS; Horn SJ; Mounier J; Shapaval V Microb Cell Fact; 2017 Jun; 16(1):101. PubMed ID: 28599651 [TBL] [Abstract][Full Text] [Related]
3. FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses. Kosa G; Shapaval V; Kohler A; Zimmermann B Microb Cell Fact; 2017 Nov; 16(1):195. PubMed ID: 29132358 [TBL] [Abstract][Full Text] [Related]
4. A high-throughput microcultivation protocol for FTIR spectroscopic characterization and identification of fungi. Shapaval V; Møretrø T; Suso HP; Asli AW; Schmitt J; Lillehaug D; Martens H; Böcker U; Kohler A J Biophotonics; 2010 Aug; 3(8-9):512-21. PubMed ID: 20414905 [TBL] [Abstract][Full Text] [Related]
5. Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi. Dzurendova S; Zimmermann B; Kohler A; Tafintseva V; Slany O; Certik M; Shapaval V PLoS One; 2020; 15(6):e0234870. PubMed ID: 32569317 [TBL] [Abstract][Full Text] [Related]
6. Main fatty acid classes in vegetable oils by SB-ATR-Fourier transform infrared (FTIR) spectroscopy. Sherazi ST; Talpur MY; Mahesar SA; Kandhro AA; Arain S Talanta; 2009 Dec; 80(2):600-6. PubMed ID: 19836526 [TBL] [Abstract][Full Text] [Related]
7. Predicting enteric methane emission of dairy cows with milk Fourier-transform infrared spectra and gas chromatography-based milk fatty acid profiles. van Gastelen S; Mollenhorst H; Antunes-Fernandes EC; Hettinga KA; van Burgsteden GG; Dijkstra J; Rademaker JLW J Dairy Sci; 2018 Jun; 101(6):5582-5598. PubMed ID: 29550122 [TBL] [Abstract][Full Text] [Related]
8. Assessing the potential of fatty acids produced by filamentous fungi as feedstock for biodiesel production. Rivaldi JD; Carvalho AKF; da Conceição LRV; de Castro HF Prep Biochem Biotechnol; 2017 Nov; 47(10):970-976. PubMed ID: 28857682 [TBL] [Abstract][Full Text] [Related]
9. Screening for the production of polyunsaturated fatty acids and cerebrosides in fungi. Calarnou L; Vigouroux E; Thollas B; Le Grand F; Mounier J J Appl Microbiol; 2024 Feb; 135(2):. PubMed ID: 38323436 [TBL] [Abstract][Full Text] [Related]
10. High-throughput screening of Mucoromycota fungi for production of low- and high-value lipids. Kosa G; Zimmermann B; Kohler A; Ekeberg D; Afseth NK; Mounier J; Shapaval V Biotechnol Biofuels; 2018; 11():66. PubMed ID: 29563969 [TBL] [Abstract][Full Text] [Related]
11. Biochemical profiling, prediction of total lipid content and fatty acid profile in oleaginous yeasts by FTIR spectroscopy. Shapaval V; Brandenburg J; Blomqvist J; Tafintseva V; Passoth V; Sandgren M; Kohler A Biotechnol Biofuels; 2019; 12():140. PubMed ID: 31178928 [TBL] [Abstract][Full Text] [Related]
12. Statistical analysis and modeling of pelletized cultivation of Mucor circinelloides for microbial lipid accumulation. Xia C; Wei W; Hu B Appl Biochem Biotechnol; 2014 Apr; 172(7):3502-12. PubMed ID: 24549800 [TBL] [Abstract][Full Text] [Related]
13. Nondestructive analyses of unsaturated fatty acid species in dietary oils by attenuated total reflectance with Fourier transform IR spectroscopy. Yoshida S; Yoshida H Biopolymers; 2003 Dec; 70(4):604-13. PubMed ID: 14648770 [TBL] [Abstract][Full Text] [Related]
14. FTIR Spectroscopy for Evaluation and Monitoring of Lipid Extraction Efficiency for Oleaginous Fungi. Forfang K; Zimmermann B; Kosa G; Kohler A; Shapaval V PLoS One; 2017; 12(1):e0170611. PubMed ID: 28118388 [TBL] [Abstract][Full Text] [Related]
15. Dual production of polyunsaturated fatty acids and beta-carotene with Mucor wosnessenskii by the process of solid-state fermentation using agro-industrial waste. Klempová T; Slaný O; Šišmiš M; Marcinčák S; Čertík M J Biotechnol; 2020 Mar; 311():1-11. PubMed ID: 32057783 [TBL] [Abstract][Full Text] [Related]
16. A novel library-independent approach based on high-throughput cultivation in Bioscreen and fingerprinting by FTIR spectroscopy for microbial source tracking in food industry. Shapaval V; Møretrø T; Wold Åsli A; Suso HP; Schmitt J; Lillehaug D; Kohler A Lett Appl Microbiol; 2017 May; 64(5):335-342. PubMed ID: 27783405 [TBL] [Abstract][Full Text] [Related]
17. Effect of culture media and conditions on polyunsaturated fatty acids production by Mortierella alpina. Jang HD; Lin YY; Yang SS Bioresour Technol; 2005 Oct; 96(15):1633-44. PubMed ID: 16023565 [TBL] [Abstract][Full Text] [Related]
18. Physiological properties and fatty acid composition in Mucor circinelloides f. circinelloides. Botha A; Kock JL; Coetzee DJ; Botes PJ Antonie Van Leeuwenhoek; 1997 Mar; 71(3):201-6. PubMed ID: 9111913 [TBL] [Abstract][Full Text] [Related]
19. FTIR microspectroscopy for rapid screening and monitoring of polyunsaturated fatty acid production in commercially valuable marine yeasts and protists. Vongsvivut J; Heraud P; Gupta A; Puri M; McNaughton D; Barrow CJ Analyst; 2013 Oct; 138(20):6016-31. PubMed ID: 23957051 [TBL] [Abstract][Full Text] [Related]
20. Lipid and alkali extractable fatty acids from Mucor rouxii: effect of thermal changes in growth environment and age of cells. Safe S Lipids; 1974 Dec; 9(12):952-6. PubMed ID: 4444428 [No Abstract] [Full Text] [Related] [Next] [New Search]