These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25208570)

  • 1. Facile synthesis of soluble functional graphene by reduction of graphene oxide via acetylacetone and its adsorption of heavy metal ions.
    Xu M; Chai J; Hu N; Huang D; Wang Y; Huang X; Wei H; Yang Z; Zhang Y
    Nanotechnology; 2014 Oct; 25(39):395602. PubMed ID: 25208570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant.
    Shen X; Jiang L; Ji Z; Wu J; Zhou H; Zhu G
    J Colloid Interface Sci; 2011 Feb; 354(2):493-7. PubMed ID: 21145557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites.
    Wang Y; Shi Z; Yin J
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1127-33. PubMed ID: 21438576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dipotassium hydrogen phosphate as reducing agent for the efficient reduction of graphene oxide nanosheets.
    Zhang X; Li K; Li H; Lu J
    J Colloid Interface Sci; 2013 Nov; 409():1-7. PubMed ID: 23978284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of divalent metal ions from aqueous solutions using graphene oxide.
    Sitko R; Turek E; Zawisza B; Malicka E; Talik E; Heimann J; Gagor A; Feist B; Wrzalik R
    Dalton Trans; 2013 Apr; 42(16):5682-9. PubMed ID: 23443993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide.
    Fan ZJ; Kai W; Yan J; Wei T; Zhi LJ; Feng J; Ren YM; Song LP; Wei F
    ACS Nano; 2011 Jan; 5(1):191-8. PubMed ID: 21230006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene oxides prepared by Hummers', Hofmann's, and Staudenmaier's methods: dramatic influences on heavy-metal-ion adsorption.
    Moo JG; Khezri B; Webster RD; Pumera M
    Chemphyschem; 2014 Oct; 15(14):2922-9. PubMed ID: 25044516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of soluble graphene quantum dots and its improved property in detecting heavy metal ions.
    Zhou C; Jiang W; Via BK
    Colloids Surf B Biointerfaces; 2014 Jun; 118():72-6. PubMed ID: 24732395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humanin: a novel functional molecule for the green synthesis of graphene.
    Gurunathan S; Han J; Kim JH
    Colloids Surf B Biointerfaces; 2013 Nov; 111():376-83. PubMed ID: 23850746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach.
    Gurunathan S; Han JW; Eppakayala V; Kim JH
    Colloids Surf B Biointerfaces; 2013 Feb; 102():772-7. PubMed ID: 23107955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets.
    Zhu C; Guo S; Fang Y; Dong S
    ACS Nano; 2010 Apr; 4(4):2429-37. PubMed ID: 20359169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-soluble graphene grafted by poly(sodium 4-styrenesulfonate) for enhancement of electric capacitance.
    Du FP; Wang JJ; Tang CY; Tsui CP; Zhou XP; Xie XL; Liao YG
    Nanotechnology; 2012 Nov; 23(47):475704. PubMed ID: 23103878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot synthesis of water-swellable Mg-Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(V) from aqueous solutions.
    Wen T; Wu X; Tan X; Wang X; Xu A
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3304-11. PubMed ID: 23528072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bismuth oxyiodide-graphene nanocomposites with high visible light photocatalytic activity.
    Liu H; Cao WR; Su Y; Chen Z; Wang Y
    J Colloid Interface Sci; 2013 May; 398():161-7. PubMed ID: 23499294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile approach for in situ synthesis of graphene-branched-Pt hybrid nanostructures with excellent electrochemical performance.
    Sahu SC; Samantara AK; Satpati B; Bhattacharjee S; Jena BK
    Nanoscale; 2013 Nov; 5(22):11265-74. PubMed ID: 24088741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of reduced graphene oxide nanosheets by a sodium diphenylamine sulfonate reduction process and its electrochemical property.
    Ji Y; Liu Q; Cheng M; Lai L; Li Z; Peng Y; Yang Y
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3811-6. PubMed ID: 23910281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of some graphene based nanocomposite materials.
    Sheshmani S; Amini R
    Carbohydr Polym; 2013 Jun; 95(1):348-59. PubMed ID: 23618279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile and fast synthesis of graphene oxide nanosheets via bath ultrasonic irradiation.
    Esmaeili A; Entezari MH
    J Colloid Interface Sci; 2014 Oct; 432():19-25. PubMed ID: 25046404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent synthesis of organophilic chemically functionalized graphene sheets.
    Shen J; Li N; Shi M; Hu Y; Ye M
    J Colloid Interface Sci; 2010 Aug; 348(2):377-83. PubMed ID: 20494367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.