These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 25208570)
41. One-step synthesis of graphene/polyallylamine-Au nanocomposites and their electrocatalysis toward oxygen reduction. Zhang Q; Ren Q; Miao Y; Yuan J; Wang K; Li F; Han D; Niu L Talanta; 2012 Jan; 89():391-5. PubMed ID: 22284507 [TBL] [Abstract][Full Text] [Related]
42. InP/ZnS-graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications. Samal M; Mohapatra P; Subbiah R; Lee CL; Anass B; Kim JA; Kim T; Yi DK Nanoscale; 2013 Oct; 5(20):9793-805. PubMed ID: 23963403 [TBL] [Abstract][Full Text] [Related]
43. Direct Synthesis of Few-Layer Graphene on NaCl Crystals. Shi L; Chen K; Du R; Bachmatiuk A; Rümmeli MH; Priydarshi MK; Zhang Y; Manivannan A; Liu Z Small; 2015 Dec; 11(47):6302-8. PubMed ID: 26524105 [TBL] [Abstract][Full Text] [Related]
44. Facile synthesis of novel hierarchical graphene-Bi2O2CO3 composites with enhanced photocatalytic performance under visible light. Madhusudan P; Yu J; Wang W; Cheng B; Liu G Dalton Trans; 2012 Dec; 41(47):14345-53. PubMed ID: 23044787 [TBL] [Abstract][Full Text] [Related]
45. Preparation of a stable graphene dispersion with high concentration by ultrasound. Zhang W; He W; Jing X J Phys Chem B; 2010 Aug; 114(32):10368-73. PubMed ID: 20701371 [TBL] [Abstract][Full Text] [Related]
46. Facile method for the preparation of water dispersible graphene using sulfonated poly(ether-ether-ketone) and its application as energy storage materials. Kuila T; Mishra AK; Khanra P; Kim NH; Uddin ME; Lee JH Langmuir; 2012 Jun; 28(25):9825-33. PubMed ID: 22646229 [TBL] [Abstract][Full Text] [Related]
47. Suspended aminosilanized graphene oxide nanosheets for selective preconcentration of lead ions and ultrasensitive determination by electrothermal atomic absorption spectrometry. Sitko R; Janik P; Feist B; Talik E; Gagor A ACS Appl Mater Interfaces; 2014 Nov; 6(22):20144-53. PubMed ID: 25329565 [TBL] [Abstract][Full Text] [Related]
48. An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity. He Y; Liu Y; Wu T; Ma J; Wang X; Gong Q; Kong W; Xing F; Liu Y; Gao J J Hazard Mater; 2013 Sep; 260():796-805. PubMed ID: 23856309 [TBL] [Abstract][Full Text] [Related]
49. Alkali reduction of graphene oxide in molten halide salts: production of corrugated graphene derivatives for high-performance supercapacitors. Abdelkader AM; Vallés C; Cooper AJ; Kinloch IA; Dryfe RA ACS Nano; 2014 Nov; 8(11):11225-33. PubMed ID: 25337832 [TBL] [Abstract][Full Text] [Related]
50. Graphene oxide-based supramolecular hydrogels for making nanohybrid systems with Au nanoparticles. Adhikari B; Biswas A; Banerjee A Langmuir; 2012 Jan; 28(2):1460-9. PubMed ID: 22133019 [TBL] [Abstract][Full Text] [Related]
51. Facile synthesis of graphene/metal nanoparticle composites via self-catalysis reduction at room temperature. Zhuo Q; Ma Y; Gao J; Zhang P; Xia Y; Tian Y; Sun X; Zhong J; Sun X Inorg Chem; 2013 Mar; 52(6):3141-7. PubMed ID: 23451829 [TBL] [Abstract][Full Text] [Related]
52. In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene. Tsoufis T; Syrgiannis Z; Akhtar N; Prato M; Katsaros F; Sideratou Z; Kouloumpis A; Gournis D; Rudolf P Nanoscale; 2015 May; 7(19):8995-9003. PubMed ID: 25920624 [TBL] [Abstract][Full Text] [Related]
53. Synthesis and application of widely soluble graphene sheets. Li F; Bao Y; Chai J; Zhang Q; Han D; Niu L Langmuir; 2010 Jul; 26(14):12314-20. PubMed ID: 20536161 [TBL] [Abstract][Full Text] [Related]
54. A green approach to the synthesis of graphene nanosheets. Guo HL; Wang XF; Qian QY; Wang FB; Xia XH ACS Nano; 2009 Sep; 3(9):2653-9. PubMed ID: 19691285 [TBL] [Abstract][Full Text] [Related]
55. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Zhao G; Li J; Ren X; Chen C; Wang X Environ Sci Technol; 2011 Dec; 45(24):10454-62. PubMed ID: 22070750 [TBL] [Abstract][Full Text] [Related]
56. Graphene Oxide/Carbon Nanotube Membranes for Highly Efficient Removal of Metal Ions from Water. Musielak M; Gagor A; Zawisza B; Talik E; Sitko R ACS Appl Mater Interfaces; 2019 Aug; 11(31):28582-28590. PubMed ID: 31318194 [TBL] [Abstract][Full Text] [Related]
57. Graphene-spindle shaped TiO₂ mesocrystal composites: facile synthesis and enhanced visible light photocatalytic performance. Yang X; Qin J; Li Y; Zhang R; Tang H J Hazard Mater; 2013 Oct; 261():342-50. PubMed ID: 23959254 [TBL] [Abstract][Full Text] [Related]
58. High Efficient Reduction of Graphene Oxide via Nascent Hydrogen at Room Temperature. Zhuo Q; Tang J; Sun J; Yan C Materials (Basel); 2018 Feb; 11(3):. PubMed ID: 29495450 [TBL] [Abstract][Full Text] [Related]
59. In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. Cao L; Liu Y; Zhang B; Lu L ACS Appl Mater Interfaces; 2010 Aug; 2(8):2339-46. PubMed ID: 20735106 [TBL] [Abstract][Full Text] [Related]
60. Simple, rapid and green one-step strategy to synthesis of graphene/carbon nanotubes/chitosan hybrid as solid-phase extraction for square-wave voltammetric detection of methyl parathion. Liu Y; Yang S; Niu W Colloids Surf B Biointerfaces; 2013 Aug; 108():266-70. PubMed ID: 23563293 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]