BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25208587)

  • 1. Tunable multilevel storage of complementary resistive switching on single-step formation of ZnO/ZnWO(x) bilayer structure via interfacial engineering.
    Lin SM; Tseng JY; Su TY; Shih YC; Huang JS; Huang CH; Lin SJ; Chueh YL
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17686-93. PubMed ID: 25208587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-step formation of ZnO/ZnWO(x) bilayer structure via interfacial engineering for high performance and low energy consumption resistive memory with controllable high resistance states.
    Lin SM; Huang JS; Chang WC; Hou TC; Huang HW; Huang CH; Lin SJ; Chueh YL
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7831-7. PubMed ID: 23876031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate.
    Huang CH; Huang JS; Lai CC; Huang HW; Lin SJ; Chueh YL
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6017-23. PubMed ID: 23705848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bipolar and Complementary Resistive Switching Characteristics and Neuromorphic System Simulation in a Pt/ZnO/TiN Synaptic Device.
    Khan SA; Lee GH; Mahata C; Ismail M; Kim H; Kim S
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33513672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistive Switching Characteristics of Li-Doped ZnO Thin Films Based on Magnetron Sputtering.
    Zhao X; Li Y; Ai C; Wen D
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power- and Low-Resistance-State-Dependent, Bipolar Reset-Switching Transitions in SiN-Based Resistive Random-Access Memory.
    Kim S; Park BG
    Nanoscale Res Lett; 2016 Dec; 11(1):360. PubMed ID: 27518231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling for multilevel switching in oxide-based bipolar resistive memory.
    Hur JH; Kim KM; Chang M; Lee SR; Lee D; Lee CB; Lee MJ; Kim YB; Kim CJ; Chung UI
    Nanotechnology; 2012 Jun; 23(22):225702. PubMed ID: 22572757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reset Voltage-Dependent Multilevel Resistive Switching Behavior in CsPb
    Ge S; Wang Y; Xiang Z; Cui Y
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24620-24626. PubMed ID: 29969009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic and interfacial effect of electrode metals on the resistive switching behaviors of zinc oxide films.
    Xue WH; Xiao W; Shang J; Chen XX; Zhu XJ; Pan L; Tan HW; Zhang WB; Ji ZH; Liu G; Xu XH; Ding J; Li RW
    Nanotechnology; 2014 Oct; 25(42):425204. PubMed ID: 25274278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of electrode materials on AlN-based bipolar and complementary resistive switching.
    Chen C; Gao S; Tang G; Fu H; Wang G; Song C; Zeng F; Pan F
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1793-9. PubMed ID: 23422310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on the resistance switching of Ag
    Lee TS; Lee NJ; Abbas H; Hu Q; Yoon TS; Lee HH; Le Shim E; Kang CJ
    Nanotechnology; 2018 Jan; 29(3):035202. PubMed ID: 29251266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of program/erase operation on the performances of oxide-based resistive switching memory.
    Wang G; Long S; Yu Z; Zhang M; Li Y; Xu D; Lv H; Liu Q; Yan X; Wang M; Xu X; Liu H; Yang B; Liu M
    Nanoscale Res Lett; 2015; 10():39. PubMed ID: 25852336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Resistive Switching with Low-Power Synaptic Behaviors of ZnO/Al
    Mahata C; Park J; Ismail M; Kim DH; Kim S
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermally grown ZnO nanowire array as an oxygen vacancies reservoir for improved resistive switching.
    Fra V; Beccaria M; Milano G; Guastella S; Bianco S; Porro S; Laurenti M; Stassi S; Ricciardi C
    Nanotechnology; 2020 Sep; 31(37):374001. PubMed ID: 32492668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switching-behavior improvement in HfO
    Zhang W; Lei J; Dai Y; Zhang X; Kang L; Peng B; Hu F
    Nanotechnology; 2022 Apr; 33(25):. PubMed ID: 35294938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable Resistive Switching in ZnO/PVA:MoS
    Sun T; Shi H; Gao S; Zhou Z; Yu Z; Guo W; Li H; Zhang F; Xu Z; Zhang X
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexistence of diode-like volatile and multilevel nonvolatile resistive switching in a ZrO2/TiO2 stack structure.
    Li Y; Yuan P; Fu L; Li R; Gao X; Tao C
    Nanotechnology; 2015 Oct; 26(39):391001. PubMed ID: 26358828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent resistive switching properties of the active region in nickel nitride-based crossbar array resistive random access memory.
    Kim HD; Yun MJ; Hong SM; Kim TG
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9088-91. PubMed ID: 25971015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Resistive Switching Behaviors and Mechanism of the W/ZnO/ITO Memory Cell.
    Yu Z; Jia J; Qu X; Wang Q; Kang W; Liu B; Xiao Q; Gao T; Xie Q
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nanopyramid bottom electrodes on bipolar resistive switching phenomena in nickel nitride films-based crossbar arrays.
    Kim HD; Yun MJ; Hong SM; Kim TG
    Nanotechnology; 2014 Mar; 25(12):125201. PubMed ID: 24569107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.