BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25208689)

  • 1. High-efficiency AgInS(2)-modified ZnO nanotube array photoelectrodes for all-solid-state hybrid solar cells.
    Han J; Liu Z; Guo K; Ya J; Zhao Y; Zhang X; Hong T; Liu J
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17119-25. PubMed ID: 25208689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inorganic-organic solar cells based on quaternary sulfide as absorber materials.
    Hong T; Liu Z; Yan W; Liu J; Zhang X
    Phys Chem Chem Phys; 2015 Dec; 17(46):30993-8. PubMed ID: 26553746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of AgInS₂ quantum dot/In₂S₃ co-sensitized photoelectrodes by a facile aqueous-phase synthesis route and their photovoltaic performance.
    Wang Y; Zhang Q; Li Y; Wang H
    Nanoscale; 2015 Apr; 7(14):6185-92. PubMed ID: 25779613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT:PCBM/ZnO nanorod array hybrid solar cells.
    Wang TC; Su YH; Hung YK; Yeh CS; Huang LW; Gomulya W; Lai LH; Loi MA; Yang JS; Wu JJ
    Phys Chem Chem Phys; 2015 Aug; 17(30):19854-61. PubMed ID: 26159896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the efficiency of ZnO-based organic solar cell by self-assembled monolayer assisted modulation on the properties of ZnO acceptor layer.
    Chiu JM; Tai Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6946-50. PubMed ID: 23895177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dendritic TiO2 /ln2 S3 /AgInS2 trilaminar core-shell branched nanoarrays and the enhanced activity for photoelectrochemical water splitting.
    Liu Z; Guo K; Han J; Li Y; Cui T; Wang B; Ya J; Zhou C
    Small; 2014 Aug; 10(15):3153-61. PubMed ID: 24700510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced photovoltaic performance of semiconductor-sensitized ZnO-CdS coupled with graphene oxide as a novel photoactive material.
    Barpuzary D; Qureshi M
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11673-82. PubMed ID: 24152060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic effect of spray-deposited Au nanoparticles on the performance of inverted organic solar cells.
    Chaturvedi N; Swami SK; Dutta V
    Nanoscale; 2014 Sep; 6(18):10772-8. PubMed ID: 25100621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture.
    Chang JY; Lin JM; Su LF; Chang CF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8740-52. PubMed ID: 23937511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient one-dimensional ZnO nanowire-based dye-sensitized solar cell using a metal-free, D-π-A-type, carbazole derivative with more than 5% power conversion.
    Barpuzary D; Patra AS; Vaghasiya JV; Solanki BG; Soni SS; Qureshi M
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12629-39. PubMed ID: 25029665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ga doping to significantly improve the performance of all-electrochemically fabricated Cu2O-ZnO nanowire solar cells.
    Xie J; Guo C; Li CM
    Phys Chem Chem Phys; 2013 Oct; 15(38):15905-11. PubMed ID: 23945632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ZnO nanoparticles on P3HT:PCBM organic solar cells with DMF-modulated PEDOT:PSS buffer layers.
    Oh SH; Heo SJ; Yang JS; Kim HJ
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11530-4. PubMed ID: 24175740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrodeposited ZnO nanowires as photoelectrodes in solid-state organic dye-sensitized solar cells.
    Muguerra H; Berthoux G; Yahya WZ; Kervella Y; Ivanova V; Bouclé J; Demadrille R
    Phys Chem Chem Phys; 2014 Apr; 16(16):7472-80. PubMed ID: 24626609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elimination of burn-in open-circuit voltage degradation by ZnO surface modification in organic solar cells.
    Kam Z; Wang X; Zhang J; Wu J
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1608-15. PubMed ID: 25552292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CuSbS2: a promising semiconductor photo-absorber material for quantum dot sensitized solar cells.
    Liu Z; Huang J; Han J; Hong T; Zhang J; Liu Z
    Phys Chem Chem Phys; 2016 Jun; 18(25):16615-20. PubMed ID: 27297190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZnO and conjugated polymer bulk heterojunction solar cells containing ZnO nanorod photoanode.
    Lee TH; Sue HJ; Cheng X
    Nanotechnology; 2011 Jul; 22(28):285401. PubMed ID: 21625040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical conversion synthesis of ZnS shell on ZnO nanowire arrays: morphology evolution and its effect on dye-sensitized solar cell.
    Liu L; Chen Y; Guo T; Zhu Y; Su Y; Jia C; Wei M; Cheng Y
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):17-23. PubMed ID: 22148364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells.
    Bi D; Boschloo G; Schwarzmüller S; Yang L; Johansson EM; Hagfeldt A
    Nanoscale; 2013 Dec; 5(23):11686-91. PubMed ID: 24100947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid-type quantum-dot cosensitized ZnO nanowire solar cell with enhanced visible-light harvesting.
    Kim H; Jeong H; An TK; Park CE; Yong K
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):268-75. PubMed ID: 23231810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array.
    Liao WP; Wu JJ
    J Phys Chem Lett; 2013 Jun; 4(11):1983-8. PubMed ID: 26283138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.