BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25208760)

  • 1. Controlling the size and morphology of supramolecular assemblies of viologen-resorcin[4]arene cavitands.
    Kashapov RR; Kharlamov SV; Sultanova ED; Mukhitova RK; Kudryashova YR; Zakharova LY; Ziganshina AY; Konovalov AI
    Chemistry; 2014 Oct; 20(43):14018-25. PubMed ID: 25208760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular recognition by self-assembled monolayers of cavitand receptors.
    Schierbaum KD; Weiss T; van Veizen EU; Engbersen JF; Reinhoudt DN; Göpel W
    Science; 1994 Sep; 265(5177):1413-5. PubMed ID: 17833812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of redox-switchable resorcin[4]arene cavitands.
    Pochorovski I; Diederich F
    Acc Chem Res; 2014 Jul; 47(7):2096-105. PubMed ID: 24814219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rigid tetraarylene-bridged cavitands from reduced-symmetry resorcin[4]arene derivatives.
    Smith JN; Lucas NT
    Chem Commun (Camb); 2018 May; 54(37):4716-4719. PubMed ID: 29683182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-Soluble Cavitands: Synthesis of Methylene-Bridged Resorcin[4]arenes Containing Hydroxyls and Phosphates at Their Feet and Bromomethyls and Thiomethyls at Their Rims.
    Mezo AR; Sherman JC
    J Org Chem; 1998 Oct; 63(20):6824-6829. PubMed ID: 11672302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular capsules derived from resorcin[4]arenes by metal-coordination.
    Schröder T; Sahu SN; Mattay J
    Top Curr Chem; 2012; 319():99-124. PubMed ID: 22160427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Megalo-Cavitands: Synthesis of Acridane[4]arenes and Formation of Large, Deep Cavitands for Selective C70 Uptake.
    Pfeuffer-Rooschüz J; Heim S; Prescimone A; Tiefenbacher K
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202209885. PubMed ID: 35924716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Investigation of Resorcin[4]arene-Based Cavitands as Affinity Materials on Quartz Crystal Microbalances.
    Ryvlin D; Dumele O; Linke A; Fankhauser D; Schweizer WB; Diederich F; Waldvogel SR
    Chempluschem; 2017 Mar; 82(3):493-497. PubMed ID: 31962013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 7,11,15,28-Tetra-kis[(2-formyl-phen-oxy)methyl]-1,21,23,25-tetra-methyl-resorcin[4]arene cavitand ethyl acetate clathrate at 173 K.
    Mc Kay MG; Friedrich HB; Howie RA; Maguire GE
    Acta Crystallogr Sect E Struct Rep Online; 2009 Mar; 65(Pt 4):o692-3. PubMed ID: 21582434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-recognition, structure, stability, and guest affinity of pyrogallol[4]arene and resorcin[4]arene capsules in solution.
    Avram L; Cohen Y
    J Am Chem Soc; 2004 Sep; 126(37):11556-63. PubMed ID: 15366902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydration and Counterion Binding of an Aminomethylated Resorcin[4]arene.
    Moreno-Gómez N; Vargas EF; Buchner R
    J Phys Chem B; 2019 Feb; 123(8):1840-1846. PubMed ID: 30715887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-Soluble Pillar[n]arene Mediated Supramolecular Self-Assembly: Multi-Dimensional Morphology Controlled by Host Size.
    Liu Y; Shi K; Ma D
    Chem Asian J; 2019 Jan; 14(2):307-312. PubMed ID: 30520241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halogen bonding molecular capsules.
    Dumele O; Trapp N; Diederich F
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12339-44. PubMed ID: 26013544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Window[1]resorcin[3]arenes: A Novel Macrocycle Able to Self-Assemble to a Catalytically Active Hexameric Cage.
    Li TR; Das C; Cornu I; Prescimone A; Piccini G; Tiefenbacher K
    JACS Au; 2024 May; 4(5):1901-1910. PubMed ID: 38818056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Nanosized Propeller-like Polyoxometalate-linked Copper(I)-Resorcin[4]arene for Efficient Catalysis.
    Xiong YL; Yu MY; Guo TT; Yang J; Ma JF
    Inorg Chem; 2020 Oct; 59(20):15402-15409. PubMed ID: 33001641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of hydrogen-bond acceptors for redox-switchable resorcin[4]arene cavitands.
    Pochorovski I; Milić J; Kolarski D; Gropp C; Schweizer WB; Diederich F
    J Am Chem Soc; 2014 Mar; 136(10):3852-8. PubMed ID: 24568570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexation of chiral amines by resorcin[4]arene sulfonic acids in polar media - circular dichroism and diffusion studies of chirality transfer and solvent dependence.
    Setner B; Szumna A
    Beilstein J Org Chem; 2019; 15():1913-1924. PubMed ID: 31501658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Counterion-mediated hierarchical self-assembly of an ABC miktoarm star terpolymer.
    Hanisch A; Gröschel AH; Förtsch M; Drechsler M; Jinnai H; Ruhland TM; Schacher FH; Müller AH
    ACS Nano; 2013 May; 7(5):4030-41. PubMed ID: 23544750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding.
    Milić J; Zalibera M; Talaat D; Nomrowski J; Trapp N; Ruhlmann L; Boudon C; Wenger OS; Savitsky A; Lubitz W; Diederich F
    Chemistry; 2018 Jan; 24(6):1431-1440. PubMed ID: 29251363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Recognition with Resorcin[4]arene Cavitands: Switching, Halogen-Bonded Capsules, and Enantioselective Complexation.
    Gropp C; Quigley BL; Diederich F
    J Am Chem Soc; 2018 Feb; 140(8):2705-2717. PubMed ID: 29451782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.