These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 25209119)

  • 1. Depth of the biologically active zone in upland habitats at the Hanford Site, Washington: Implications for remediation and ecological risk management.
    Sample BE; Lowe J; Seeley P; Markin M; McCarthy C; Hansen J; Aly AH
    Integr Environ Assess Manag; 2015 Jan; 11(1):150-60. PubMed ID: 25209119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biologically active zone in upland habitats at the Hanford Site, Washington, USA: Focus on plant rooting depth and biomobilization.
    Lovtang S; Delistraty D; Rochette E
    Integr Environ Assess Manag; 2018 Jul; 14(4):442-446. PubMed ID: 29573120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of ecological resources at operating facilities at contaminated sites: The Department of Energy's Hanford Site as a case study.
    Burger J; Gochfeld M; Kosson DS; Brown KG; Salisbury JA; Jeitner C
    Environ Res; 2019 Mar; 170():452-462. PubMed ID: 30640079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of root uptake of
    Ota M; Tanaka T
    J Environ Radioact; 2019 May; 201():5-18. PubMed ID: 30721755
    [No Abstract]   [Full Text] [Related]  

  • 5. Risk to ecological resources following remediation can be due mainly to increased resource value of successful restoration: A case study from the Department of Energy's Hanford Site.
    Burger J; Gochfeld M; Kosson DS; Brown KG; Salisbury JA; Jeitner C
    Environ Res; 2020 Jul; 186():109536. PubMed ID: 32344209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural attenuation/phytoremediation in the vadose zone of a former industrial sludge basin.
    Olson PE; Flechter JS; Philp PR
    Environ Sci Pollut Res Int; 2001; 8(4):243-9. PubMed ID: 11601360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A global analysis of root distributions for terrestrial biomes.
    Jackson RB; Canadell J; Ehleringer JR; Mooney HA; Sala OE; Schulze ED
    Oecologia; 1996 Nov; 108(3):389-411. PubMed ID: 28307854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of buffer lands to determining risk to ecological resources at legacy contaminated sites: A case study for the Department of Energy's Hanford Site, Washington, USA.
    Burger J; Gochfeld M; Jeitner C
    J Toxicol Environ Health A; 2019; 82(22):1151-1163. PubMed ID: 31852396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii.
    Payne ZM; Lamichhane KM; Babcock RW; Turnbull SJ
    Environ Sci Process Impacts; 2013 Oct; 15(11):2023-9. PubMed ID: 24061783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coarse root spatial distribution determined using a ground-penetrating radar technique in a subtropical evergreen broad-leaved forest, China.
    Yan H; Dong X; Feng G; Zhang S; Mucciardi A
    Sci China Life Sci; 2013 Nov; 56(11):1038-46. PubMed ID: 24203453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk valuation of ecological resources at contaminated deactivation and decommissioning facilities: methodology and a case study at the Department of Energy's Hanford site.
    Burger J; Gochfeld M; Jeitner C
    Environ Monit Assess; 2018 Jul; 190(8):478. PubMed ID: 30030638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertical distribution of soil removed by four species of burrowing rodents in disturbed and undisturbed soils.
    Reynolds TD; Laundré JW
    Health Phys; 1988 Apr; 54(4):445-50. PubMed ID: 3280518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of uncertainties in protecting ecological resources during remediation and restoration.
    Burger J; Gochfeld M; Bunn A; Looney B; Jeitner C
    J Toxicol Environ Health A; 2021 Jun; 84(12):485-502. PubMed ID: 33632081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plants extend root deeper rather than increase root biomass triggered by critical age and soil water depletion.
    Li B; Wang X; Li Z
    Sci Total Environ; 2024 Mar; 914():169689. PubMed ID: 38160841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species.
    Bucci SJ; Scholz FG; Goldstein G; Meinzer FC; Arce ME
    Oecologia; 2009 Jul; 160(4):631-41. PubMed ID: 19330355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of rooting depth of
    Nguyen TP; Kurosawa T; Kikuchi M; Yoschenko V; Tsukada H
    J Environ Radioact; 2022 May; 246():106847. PubMed ID: 35219124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic, lead, and other trace elements in soils contaminated with pesticide residues at the Hanford site (USA).
    Yokel J; Delistraty DA
    Environ Toxicol; 2003 Apr; 18(2):104-14. PubMed ID: 12635098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species interactions at the level of fine roots in the field: influence of soil nutrient heterogeneity and plant size.
    Caldwell MM; Manwaring JH; Durham SL
    Oecologia; 1996 Jun; 106(4):440-447. PubMed ID: 28307441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimicry of vascular plants as a means of saline soil remediation.
    Swallow MJB; O'Sullivan G
    Sci Total Environ; 2019 Mar; 655():84-91. PubMed ID: 30469071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum rooting depth of vegetation types at the global scale.
    Canadell J; Jackson RB; Ehleringer JB; Mooney HA; Sala OE; Schulze ED
    Oecologia; 1996 Dec; 108(4):583-595. PubMed ID: 28307789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.