BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25209269)

  • 1. Corticospinal sprouting differs according to spinal injury location and cortical origin in macaque monkeys.
    Darian-Smith C; Lilak A; Garner J; Irvine KA
    J Neurosci; 2014 Sep; 34(37):12267-79. PubMed ID: 25209269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive somatosensory and motor corticospinal sprouting occurs following a central dorsal column lesion in monkeys.
    Fisher KM; Lilak A; Garner J; Darian-Smith C
    J Comp Neurol; 2018 Oct; 526(15):2373-2387. PubMed ID: 30014461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatosensory corticospinal tract axons sprout within the cervical cord following a dorsal root/dorsal column spinal injury in the rat.
    McCann MM; Fisher KM; Ahloy-Dallaire J; Darian-Smith C
    J Comp Neurol; 2020 Jun; 528(8):1293-1306. PubMed ID: 31769033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioral recovery after a spinal deafferentation injury in monkeys does not correlate with extent of corticospinal sprouting.
    Crowley M; Lilak A; Garner JP; Darian-Smith C
    Behav Brain Res; 2022 Jan; 416():113533. PubMed ID: 34453971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticospinal sprouting occurs selectively following dorsal rhizotomy in the macaque monkey.
    Darian-Smith C; Lilak A; Alarcón C
    J Comp Neurol; 2013 Jul; 521(10):2359-72. PubMed ID: 23239125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reorganization of the Primate Dorsal Horn in Response to a Deafferentation Lesion Affecting Hand Function.
    Fisher KM; Garner JP; Darian-Smith C
    J Neurosci; 2020 Feb; 40(8):1625-1639. PubMed ID: 31959698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits.
    Jiang YQ; Zaaimi B; Martin JH
    J Neurosci; 2016 Jan; 36(1):193-203. PubMed ID: 26740661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-Establishment of Cortical Motor Output Maps and Spontaneous Functional Recovery via Spared Dorsolaterally Projecting Corticospinal Neurons after Dorsal Column Spinal Cord Injury in Adult Mice.
    Hilton BJ; Anenberg E; Harrison TC; Boyd JD; Murphy TH; Tetzlaff W
    J Neurosci; 2016 Apr; 36(14):4080-92. PubMed ID: 27053214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
    Weishaupt N; Hurd C; Wei DZ; Fouad K
    Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regenerative growth of corticospinal tract axons via the ventral column after spinal cord injury in mice.
    Steward O; Zheng B; Tessier-Lavigne M; Hofstadter M; Sharp K; Yee KM
    J Neurosci; 2008 Jul; 28(27):6836-47. PubMed ID: 18596159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reorganization of Corticospinal Projections after Prominent Recovery of Finger Dexterity from Partial Spinal Cord Injury in Macaque Monkeys.
    Sawada M; Yoshino-Saito K; Ninomiya T; Oishi T; Yamashita T; Onoe H; Takada M; Nishimura Y; Isa T
    eNeuro; 2023 Aug; 10(8):. PubMed ID: 37468328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion.
    Jiang YQ; Armada K; Martin JH
    Exp Neurol; 2019 Nov; 321():113015. PubMed ID: 31326353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reorganization of corticospinal tract fibers after spinal cord injury in adult macaques.
    Nakagawa H; Ninomiya T; Yamashita T; Takada M
    Sci Rep; 2015 Jul; 5():11986. PubMed ID: 26132896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-Nogo-A antibody treatment enhances sprouting of corticospinal axons rostral to a unilateral cervical spinal cord lesion in adult macaque monkey.
    Freund P; Wannier T; Schmidlin E; Bloch J; Mir A; Schwab ME; Rouiller EM
    J Comp Neurol; 2007 Jun; 502(4):644-59. PubMed ID: 17394135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mice lacking L1 cell adhesion molecule have deficits in locomotion and exhibit enhanced corticospinal tract sprouting following mild contusion injury to the spinal cord.
    Jakeman LB; Chen Y; Lucin KM; McTigue DM
    Eur J Neurosci; 2006 Apr; 23(8):1997-2011. PubMed ID: 16630048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.
    Mahmood A; Wu H; Qu C; Xiong Y; Chopp M
    J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corticospinal tract sprouting in the injured rat spinal cord stimulated by Schwann cell preconditioning of the motor cortex.
    Wills TE; Batchelor PE; Kerr NF; Sidon K; Katz M; Loy C; Howells DW
    Neurol Res; 2013 Sep; 35(7):763-72. PubMed ID: 23582158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in synaptic populations in the spinal dorsal horn following a dorsal rhizotomy in the monkey.
    Darian-Smith C; Hopkins S; Ralston HJ
    J Comp Neurol; 2010 Jan; 518(1):103-17. PubMed ID: 19882723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes of motor corticobulbar projections following different lesion types affecting the central nervous system in adult macaque monkeys.
    Fregosi M; Contestabile A; Badoud S; Borgognon S; Cottet J; Brunet JF; Bloch J; Schwab ME; Rouiller EM
    Eur J Neurosci; 2018 Aug; 48(4):2050-2070. PubMed ID: 30019432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.