These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 2520934)
1. The influence of fresh gas flow and inspiratory/expiratory ratio on tidal volume and arterial CO2 tension in mechanically ventilated surgical patients. Scheller MS; Jones BR; Benumof JL J Cardiothorac Anesth; 1989 Oct; 3(5):564-7. PubMed ID: 2520934 [TBL] [Abstract][Full Text] [Related]
2. Effect of ventilatory variables on gas exchange and hemodynamics during total liquid ventilation in a rat model. Matsuda K; Sawada S; Bartlett RH; Hirschl RB Crit Care Med; 2003 Jul; 31(7):2034-40. PubMed ID: 12847401 [TBL] [Abstract][Full Text] [Related]
3. Inspiratory-to-expiratory time ratio and alveolar ventilation during high-frequency ventilation in dogs. Yamada Y; Hales CA; Venegas JG J Appl Physiol (1985); 1986 Nov; 61(5):1903-7. PubMed ID: 3096949 [TBL] [Abstract][Full Text] [Related]
4. Pressure controlled-inverse ratio ventilation and pulmonary gas exchange during lower abdominal surgery. Tweed WA; Tan PL Can J Anaesth; 1992 Dec; 39(10):1036-40. PubMed ID: 1464129 [TBL] [Abstract][Full Text] [Related]
5. Intratracheal pulmonary ventilation in a rabbit lung injury model: continuous airway pressure monitoring and gas exchange efficacy. Hon EK; Hultquist KA; Loescher T; Raszynski A; Torbati D; Tabares C; Wolfsdorf J Crit Care Med; 2000 Jul; 28(7):2480-5. PubMed ID: 10921582 [TBL] [Abstract][Full Text] [Related]
6. Rebreathing improves accuracy of ventilatory monitoring. Bowie JR; Knox P; Downs JB; Smith RA J Clin Monit; 1995 Nov; 11(6):354-7. PubMed ID: 8576717 [TBL] [Abstract][Full Text] [Related]
7. [The effect of changes in lung compliance on ventilation in newborns. Results of animal experiments with two different respirators]. Schirmer U; Schreiber M; Goertz A; Schütz W; Rockemann M; Georgieff M Anaesthesist; 1994 Aug; 43(8):521-7. PubMed ID: 7978175 [TBL] [Abstract][Full Text] [Related]
8. Sizing the lung in dogs: the inspiratory capacity defines the tidal volume. Donati PA; Gogniat E; Madorno M; Guevara JM; Guillemi EC; Lavalle MDC; Scorza FP; Mayer GF; Rodriguez PO Rev Bras Ter Intensiva; 2018; 30(2):144-152. PubMed ID: 29995078 [TBL] [Abstract][Full Text] [Related]
9. The effect of carbon dioxide, respiratory rate and tidal volume on human heart rate variability. Pöyhönen M; Syväoja S; Hartikainen J; Ruokonen E; Takala J Acta Anaesthesiol Scand; 2004 Jan; 48(1):93-101. PubMed ID: 14674979 [TBL] [Abstract][Full Text] [Related]
10. Physiological effects of reduced tidal volume at constant minute ventilation and inspiratory flow rate in acute respiratory distress syndrome. Kiiski R; Kaitainen S; Karppi R; Takala J Intensive Care Med; 1996 Mar; 22(3):192-8. PubMed ID: 8727431 [TBL] [Abstract][Full Text] [Related]
11. Respiratory mechanics and gas exchange during one-lung ventilation for thoracic surgery: the effects of end-inspiratory pause in stable COPD patients. Bardoczky GI; d'Hollander AA; Rocmans P; Estenne M; Yernault JC J Cardiothorac Vasc Anesth; 1998 Apr; 12(2):137-41. PubMed ID: 9583541 [TBL] [Abstract][Full Text] [Related]
12. A volume-controlled liquid ventilator with pressure-limit mode: imperative expiratory control. Baba Y; Taenaka Y; Akagi H; Nakatani T; Masuzawa T; Tatsumi E; Wakisaka Y; Toda K; Eya K; Tsukahara K; Takano H Artif Organs; 1996 Sep; 20(9):1052-6. PubMed ID: 8864028 [TBL] [Abstract][Full Text] [Related]
13. Continuous oxygen insufflation in addition to IPPV causes air trapping in a mechanical lung model. Howell HB; Parker J; Benumof JL; Harders D J Cardiothorac Anesth; 1989 Oct; 3(5):558-63. PubMed ID: 2520933 [TBL] [Abstract][Full Text] [Related]
14. Tracheal gas insufflation augments CO2 clearance during mechanical ventilation. Ravenscraft SA; Burke WC; Nahum A; Adams AB; Nakos G; Marcy TW; Marini JJ Am Rev Respir Dis; 1993 Aug; 148(2):345-51. PubMed ID: 8342897 [TBL] [Abstract][Full Text] [Related]
15. Tracheal gas insufflation reduces the tidal volume while PaCO2 is maintained constant. Nakos G; Zakinthinos S; Kotanidou A; Tsagaris H; Roussos C Intensive Care Med; 1994 Jul; 20(6):407-13. PubMed ID: 7798444 [TBL] [Abstract][Full Text] [Related]
16. Low-birth-weight neonates exhibit a physiological set-point to regulate CO2: an untapped potential to minimize volutrauma-associated lung injury. Mishra R; Golombek SG; Ramirez-Tolentino SR; Das S; La Gamma EF Am J Perinatol; 2003 Nov; 20(8):453-63. PubMed ID: 14703594 [TBL] [Abstract][Full Text] [Related]
17. An appropriate inspiratory flow pattern can enhance CO2 exchange, facilitating protective ventilation of healthy lungs. Sturesson LW; Malmkvist G; Allvin S; Collryd M; Bodelsson M; Jonson B Br J Anaesth; 2016 Aug; 117(2):243-9. PubMed ID: 27440637 [TBL] [Abstract][Full Text] [Related]
18. A new ventilator converter with the Siemens Servo Ventilator--evaluation in a lung model. Hesselvik JF; Bengtsson M; Johnson A Acta Anaesthesiol Scand; 1992 Jan; 36(1):75-9. PubMed ID: 1539483 [TBL] [Abstract][Full Text] [Related]
19. Predictable normocapnia [correction of normocapnoea] in controlled ventilation of infants with Jackson Rees or Bain system. Park JW; Chung SH; Choe YK; Kim YJ; Shin CM; Park JY Anaesthesia; 1998 Dec; 53(12):1180-4. PubMed ID: 10193221 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of a new operating room ventilator with volume-controlled ventilation: the Ohmeda 7900. Rothschiller JL; Uejima T; Dsida RM; Coté CJ Anesth Analg; 1999 Jan; 88(1):39-42. PubMed ID: 9895063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]