These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 25209735)
1. Modelling of atherosclerotic plaque for use in a computational test-bed for stent angioplasty. Conway C; McGarry JP; McHugh PE Ann Biomed Eng; 2014 Dec; 42(12):2425-39. PubMed ID: 25209735 [TBL] [Abstract][Full Text] [Related]
2. Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque. Hajiali Z; Dabagh M; Debusschere N; De Beule M; Jalali P Comput Biol Med; 2015 Nov; 66():39-46. PubMed ID: 26378501 [TBL] [Abstract][Full Text] [Related]
3. Simulation of a balloon expandable stent in a realistic coronary artery-Determination of the optimum modelling strategy. Zahedmanesh H; John Kelly D; Lally C J Biomech; 2010 Aug; 43(11):2126-32. PubMed ID: 20452594 [TBL] [Abstract][Full Text] [Related]
4. Numerical Simulation of Stent Angioplasty with Predilation: An Investigation into Lesion Constitutive Representation and Calcification Influence. Conway C; McGarry JP; Edelman ER; McHugh PE Ann Biomed Eng; 2017 Sep; 45(9):2244-2252. PubMed ID: 28488215 [TBL] [Abstract][Full Text] [Related]
5. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Pant S; Bressloff NW; Limbert G Biomech Model Mechanobiol; 2012 Jan; 11(1-2):61-82. PubMed ID: 21373889 [TBL] [Abstract][Full Text] [Related]
6. Effects of plaque lengths on stent surface roughness. Syaifudin A; Takeda R; Sasaki K Biomed Mater Eng; 2015; 25(2):189-202. PubMed ID: 25813957 [TBL] [Abstract][Full Text] [Related]
7. Cardiovascular stent design and vessel stresses: a finite element analysis. Lally C; Dolan F; Prendergast PJ J Biomech; 2005 Aug; 38(8):1574-81. PubMed ID: 15958213 [TBL] [Abstract][Full Text] [Related]
8. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Migliavacca F; Petrini L; Massarotti P; Schievano S; Auricchio F; Dubini G Biomech Model Mechanobiol; 2004 Jun; 2(4):205-17. PubMed ID: 15029511 [TBL] [Abstract][Full Text] [Related]
10. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. Morlacchi S; Pennati G; Petrini L; Dubini G; Migliavacca F J Biomech; 2014 Mar; 47(4):899-907. PubMed ID: 24468208 [TBL] [Abstract][Full Text] [Related]
11. Coronary stenting with a novel stainless steel balloon-expandable stent: determinants of neointimal formation and changes in arterial geometry after placement in an atherosclerotic model. Carter AJ; Laird JR; Kufs WM; Bailey L; Hoopes TG; Reeves T; Farb A; Virmani R J Am Coll Cardiol; 1996 Apr; 27(5):1270-7. PubMed ID: 8609355 [TBL] [Abstract][Full Text] [Related]
12. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation. Martin DM; Murphy EA; Boyle FJ Med Eng Phys; 2014 Aug; 36(8):1047-56. PubMed ID: 24953569 [TBL] [Abstract][Full Text] [Related]
13. Inelasticity of human carotid atherosclerotic plaque. Maher E; Creane A; Sultan S; Hynes N; Lally C; Kelly DJ Ann Biomed Eng; 2011 Sep; 39(9):2445-55. PubMed ID: 21618044 [TBL] [Abstract][Full Text] [Related]
14. Effects of stent design and atherosclerotic plaque composition on arterial wall biomechanics. Timmins LH; Meyer CA; Moreno MR; Moore JE J Endovasc Ther; 2008 Dec; 15(6):643-54. PubMed ID: 19090628 [TBL] [Abstract][Full Text] [Related]
15. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. Gervaso F; Capelli C; Petrini L; Lattanzio S; Di Virgilio L; Migliavacca F J Biomech; 2008; 41(6):1206-12. PubMed ID: 18374340 [TBL] [Abstract][Full Text] [Related]
16. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Pericevic I; Lally C; Toner D; Kelly DJ Med Eng Phys; 2009 May; 31(4):428-33. PubMed ID: 19129001 [TBL] [Abstract][Full Text] [Related]
17. An analysis of the contact between the stent and the artery using tube hydroforming simulation. Araújo R; Guimarães TA; Oliveira SA Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1214-22. PubMed ID: 23813983 [TBL] [Abstract][Full Text] [Related]
18. Stent deformation, physical stress, and drug elution obtained with provisional stenting, conventional culotte and Tryton-based culotte to treat bifurcations: a virtual simulation study. Morlacchi S; Chiastra C; Cutrì E; Zunino P; Burzotta F; Formaggia L; Dubini G; Migliavacca F EuroIntervention; 2014; 9(12):1441-53. PubMed ID: 24755384 [TBL] [Abstract][Full Text] [Related]