These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25210002)

  • 1. Alkenyl/thiol-derived metal-organic frameworks (MOFs) by means of postsynthetic modification for effective mercury adsorption.
    Liu T; Che JX; Hu YZ; Dong XW; Liu XY; Che CM
    Chemistry; 2014 Oct; 20(43):14090-5. PubMed ID: 25210002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water.
    Ke F; Qiu LG; Yuan YP; Peng FM; Jiang X; Xie AJ; Shen YH; Zhu JF
    J Hazard Mater; 2011 Nov; 196():36-43. PubMed ID: 21924826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of central metal ions of analogous metal-organic frameworks on adsorption of organoarsenic compounds from water: plausible mechanism of adsorption and water purification.
    Jun JW; Tong M; Jung BK; Hasan Z; Zhong C; Jhung SH
    Chemistry; 2015 Jan; 21(1):347-54. PubMed ID: 25298118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Straightforward installation of carbon-halogen, carbon-oxygen and carbon-carbon bonds within metal-organic frameworks (MOF) via palladium-catalysed direct C-H functionalization.
    Liu T; Li DQ; Wang SY; Hu YZ; Dong XW; Liu XY; Che CM
    Chem Commun (Camb); 2014 Nov; 50(87):13261-4. PubMed ID: 25232794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postsynthetic modification of metal-organic frameworks--a progress report.
    Tanabe KK; Cohen SM
    Chem Soc Rev; 2011 Feb; 40(2):498-519. PubMed ID: 21103601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalization of metal-organic frameworks through the postsynthetic transformation of olefin side groups.
    Hindelang K; Kronast A; Vagin SI; Rieger B
    Chemistry; 2013 Jun; 19(25):8244-52. PubMed ID: 23640916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of mercury from water by carbonaceous sorbents derived from walnut shell.
    Zabihi M; Ahmadpour A; Asl AH
    J Hazard Mater; 2009 Aug; 167(1-3):230-6. PubMed ID: 19181445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification.
    Wang Z; Tanabe KK; Cohen SM
    Chemistry; 2010 Jan; 16(1):212-7. PubMed ID: 19918824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury (II) removal from water by coconut shell based activated carbon: batch and column studies.
    Goel J; Kadirvelu K; Rajagopal C
    Environ Technol; 2004 Feb; 25(2):141-53. PubMed ID: 15116872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@MIL-101(Cr) hybrid material.
    Jia SY; Zhang YF; Liu Y; Qin FX; Ren HT; Wu SH
    J Hazard Mater; 2013 Nov; 262():589-97. PubMed ID: 24095999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of the coordination status of the open metal sites in metal-organic frameworks for high performance separation of polar compounds.
    Fu YY; Yang CX; Yan XP
    Langmuir; 2012 May; 28(17):6794-802. PubMed ID: 22480159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes.
    Bandaru NM; Reta N; Dalal H; Ellis AV; Shapter J; Voelcker NH
    J Hazard Mater; 2013 Oct; 261():534-41. PubMed ID: 23994651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postsynthetic ligand and cation exchange in robust metal-organic frameworks.
    Kim M; Cahill JF; Fei H; Prather KA; Cohen SM
    J Am Chem Soc; 2012 Oct; 134(43):18082-8. PubMed ID: 23039827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of heterogeneous metal-organic framework organocatalysts prepared by postsynthetic modification.
    Garibay SJ; Wang Z; Cohen SM
    Inorg Chem; 2010 Sep; 49(17):8086-91. PubMed ID: 20698561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiol-decorated defective metal-organic framework for effective removal of mercury(II) ion.
    Gao X; Liu B; Zhao X
    Chemosphere; 2023 Mar; 317():137891. PubMed ID: 36657579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postsynthetic modification of metal-organic frameworks.
    Wang Z; Cohen SM
    Chem Soc Rev; 2009 May; 38(5):1315-29. PubMed ID: 19384440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly recyclable cysteamine-modified acid-resistant MOFs for enhancing Hg (II) removal from water.
    Liu F; Xiong W; Feng X; Cheng G; Shi L; Chen D; Zhang Y
    Environ Technol; 2020 Sep; 41(23):3094-3104. PubMed ID: 30896301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of silver nanoparticles from aqueous solution on copper-based metal organic frameworks (HKUST-1).
    Conde-González JE; Peña-Méndez EM; Rybáková S; Pasán J; Ruiz-Pérez C; Havel J
    Chemosphere; 2016 May; 150():659-666. PubMed ID: 26879292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for screening the potential of MOFs as CO2 adsorbents in pressure swing adsorption processes.
    Pirngruber GD; Hamon L; Bourrelly S; Llewellyn PL; Lenoir E; Guillerm V; Serre C; Devic T
    ChemSusChem; 2012 Apr; 5(4):762-76. PubMed ID: 22438338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of mercury by thiol-grafted chitosan gel beads.
    Merrifield JD; Davids WG; MacRae JD; Amirbahman A
    Water Res; 2004 Jul; 38(13):3132-8. PubMed ID: 15261552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.