BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25210035)

  • 1. Human 2-oxoglutarate dehydrogenase complex E1 component forms a thiamin-derived radical by aerobic oxidation of the enamine intermediate.
    Nemeria NS; Ambrus A; Patel H; Gerfen G; Adam-Vizi V; Tretter L; Zhou J; Wang J; Jordan F
    J Biol Chem; 2014 Oct; 289(43):29859-73. PubMed ID: 25210035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human Krebs cycle 2-oxoglutarate dehydrogenase complex creates an additional source of superoxide/hydrogen peroxide from 2-oxoadipate as alternative substrate.
    Nemeria NS; Gerfen G; Guevara E; Nareddy PR; Szostak M; Jordan F
    Free Radic Biol Med; 2017 Jul; 108():644-654. PubMed ID: 28435050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mitochondrial 2-oxoadipate and 2-oxoglutarate dehydrogenase complexes share their E2 and E3 components for their function and both generate reactive oxygen species.
    Nemeria NS; Gerfen G; Nareddy PR; Yang L; Zhang X; Szostak M; Jordan F
    Free Radic Biol Med; 2018 Feb; 115():136-145. PubMed ID: 29191460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational transitions in the active site of mycobacterial 2-oxoglutarate dehydrogenase upon binding phosphonate analogues of 2-oxoglutarate: From a Michaelis-like complex to ThDP adducts.
    Wagner T; Boyko A; Alzari PM; Bunik VI; Bellinzoni M
    J Struct Biol; 2019 Nov; 208(2):182-190. PubMed ID: 31476368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of Mitochondrial 2-Oxoglutarate Dehydrogenase by Cocarboxylase in Human Lung Adenocarcinoma Cells A549 Is p53/p21-Dependent and Impairs Cellular Redox State, Mimicking the Cisplatin Action.
    Bunik VI; Aleshin VA; Zhou X; Tabakov VY; Karlsson A
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32466567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic properties of the 2-oxoglutarate dehydrogenase complex from Azotobacter vinelandii evidence for the formation of a precatalytic complex with 2-oxoglutarate.
    Bunik V; Westphal AH; de Kok A
    Eur J Biochem; 2000 Jun; 267(12):3583-91. PubMed ID: 10848975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competence of Thiamin Diphosphate-Dependent Enzymes with 2'-Methoxythiamin Diphosphate Derived from Bacimethrin, a Naturally Occurring Thiamin Anti-vitamin.
    Nemeria NS; Shome B; DeColli AA; Heflin K; Begley TP; Meyers CF; Jordan F
    Biochemistry; 2016 Feb; 55(7):1135-48. PubMed ID: 26813608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for functional and regulatory cross-talk between the tricarboxylic acid cycle 2-oxoglutarate dehydrogenase complex and 2-oxoadipate dehydrogenase on the l-lysine, l-hydroxylysine and l-tryptophan degradation pathways from studies in vitro.
    Nemeria NS; Gerfen G; Yang L; Zhang X; Jordan F
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):932-939. PubMed ID: 29752936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Off-pathway, oxygen-dependent thiamine radical in the Krebs cycle.
    Frank RA; Kay CW; Hirst J; Luisi BF
    J Am Chem Soc; 2008 Feb; 130(5):1662-8. PubMed ID: 18183975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in the experimental observation of thiamin diphosphate-bound intermediates on enzymes and mechanistic information derived from these observations.
    Jordan F; Nemeria NS
    Bioorg Chem; 2014 Dec; 57():251-262. PubMed ID: 25228115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.
    Parkhomenko YM; Kudryavtsev PA; Pylypchuk SY; Chekhivska LI; Stepanenko SP; Sergiichuk AA; Bunik VI
    J Neurochem; 2011 Jun; 117(6):1055-65. PubMed ID: 21517848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Snapshot of a key intermediate in enzymatic thiamin catalysis: crystal structure of the alpha-carbanion of (alpha,beta-dihydroxyethyl)-thiamin diphosphate in the active site of transketolase from Saccharomyces cerevisiae.
    Fiedler E; Thorell S; Sandalova T; Golbik R; König S; Schneider G
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):591-5. PubMed ID: 11773632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for dramatic acceleration of a C-H bond ionization rate in thiamin diphosphate enzymes by the protein environment.
    Zhang S; Zhou L; Nemeria N; Yan Y; Zhang Z; Zou Y; Jordan F
    Biochemistry; 2005 Feb; 44(7):2237-43. PubMed ID: 15709735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer in acetohydroxy acid synthase as a side reaction of catalysis. Implications for the reactivity and partitioning of the carbanion/enamine form of (alpha-hydroxyethyl)thiamin diphosphate in a "nonredox" flavoenzyme.
    Tittmann K; Schröder K; Golbik R; McCourt J; Kaplun A; Duggleby RG; Barak Z; Chipman DM; Hübner G
    Biochemistry; 2004 Jul; 43(27):8652-61. PubMed ID: 15236573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of reactive oxygen species by human and bacterial pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes reconstituted from recombinant components.
    Ambrus A; Nemeria NS; Torocsik B; Tretter L; Nilsson M; Jordan F; Adam-Vizi V
    Free Radic Biol Med; 2015 Dec; 89():642-50. PubMed ID: 26456061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative decarboxylation of pyruvate by 1-deoxy-d-xyulose 5-phosphate synthase, a central metabolic enzyme in bacteria.
    DeColli AA; Nemeria NS; Majumdar A; Gerfen GJ; Jordan F; Freel Meyers CL
    J Biol Chem; 2018 Jul; 293(28):10857-10869. PubMed ID: 29784878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double duty for a conserved glutamate in pyruvate decarboxylase: evidence of the participation in stereoelectronically controlled decarboxylation and in protonation of the nascent carbanion/enamine intermediate .
    Meyer D; Neumann P; Parthier C; Friedemann R; Nemeria N; Jordan F; Tittmann K
    Biochemistry; 2010 Sep; 49(37):8197-212. PubMed ID: 20715795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of allosteric regulators on individual steps in the reaction catalyzed by Mycobacterium tuberculosis 2-hydroxy-3-oxoadipate synthase.
    Balakrishnan A; Jordan F; Nathan CF
    J Biol Chem; 2013 Jul; 288(30):21688-702. PubMed ID: 23760263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the 2-oxoglutarate dehydrogenase lipoate succinyltransferase complex from cauliflower by nucleotide. Pre-steady state kinetics and physical studies.
    Craig DW; Wedding RT
    J Biol Chem; 1980 Jun; 255(12):5769-75. PubMed ID: 6769922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.