These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25210739)

  • 1. Mapping seabird sensitivity to offshore wind farms.
    Bradbury G; Trinder M; Furness B; Banks AN; Caldow RW; Hume D
    PLoS One; 2014; 9(9):e106366. PubMed ID: 25210739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing vulnerability of marine bird populations to offshore wind farms.
    Furness RW; Wade HM; Masden EA
    J Environ Manage; 2013 Apr; 119():56-66. PubMed ID: 23454414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seabird aggregative patterns: a new tool for offshore wind energy risk assessment.
    Christel I; Certain G; Cama A; Vieites DR; Ferrer X
    Mar Pollut Bull; 2013 Jan; 66(1-2):84-91. PubMed ID: 23212000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential impacts of floating wind turbine technology for marine species and habitats.
    Maxwell SM; Kershaw F; Locke CC; Conners MG; Dawson C; Aylesworth S; Loomis R; Johnson AF
    J Environ Manage; 2022 Apr; 307():114577. PubMed ID: 35091240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf.
    Kelsey EC; Felis JJ; Czapanskiy M; Pereksta DM; Adams J
    J Environ Manage; 2018 Dec; 227():229-247. PubMed ID: 30195148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the impact of marine wind farms on birds through movement modelling.
    Masden EA; Reeve R; Desholm M; Fox AD; Furness RW; Haydon DT
    J R Soc Interface; 2012 Sep; 9(74):2120-30. PubMed ID: 22552921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps.
    Cook ASCP; Humphreys EM; Bennet F; Masden EA; Burton NHK
    Mar Environ Res; 2018 Sep; 140():278-288. PubMed ID: 29980294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risks to different populations and age classes of gannets from impacts of offshore wind farms in the southern North Sea.
    Pollock CJ; Lane JV; Buckingham L; Garthe S; Jeavons R; Furness RW; Hamer KC
    Mar Environ Res; 2021 Oct; 171():105457. PubMed ID: 34482114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of two marine top predators to an offshore wind farm.
    Vallejo GC; Grellier K; Nelson EJ; McGregor RM; Canning SJ; Caryl FM; McLean N
    Ecol Evol; 2017 Nov; 7(21):8698-8708. PubMed ID: 29152170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of migrating soaring migrants indicate attraction to marine wind farms.
    Skov H; Desholm M; Heinänen S; Kahlert JA; Laubek B; Jensen NE; Žydelis R; Jensen BP
    Biol Lett; 2016 Dec; 12(12):. PubMed ID: 28003522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Avian sensitivity to mortality: prioritising migratory bird species for assessment at proposed wind farms.
    Desholm M
    J Environ Manage; 2009 Jun; 90(8):2672-9. PubMed ID: 19299065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of offshore windfarms on seabird abundance: Strong effects in spring and in the breeding season.
    Peschko V; Mendel B; Müller S; Markones N; Mercker M; Garthe S
    Mar Environ Res; 2020 Dec; 162():105157. PubMed ID: 33080559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Satellite telemetry and digital aerial surveys show strong displacement of red-throated divers (Gavia stellata) from offshore wind farms.
    Heinänen S; Žydelis R; Kleinschmidt B; Dorsch M; Burger C; Morkūnas J; Quillfeldt P; Nehls G
    Mar Environ Res; 2020 Sep; 160():104989. PubMed ID: 32907727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of development of wind energy and associated changes in land use on bird densities in upland areas.
    Fernández-Bellon D; Wilson MW; Irwin S; O'Halloran J
    Conserv Biol; 2019 Apr; 33(2):413-422. PubMed ID: 30346052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds.
    Masden EA; Haydon DT; Fox AD; Furness RW
    Mar Pollut Bull; 2010 Jul; 60(7):1085-91. PubMed ID: 20188382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.
    Gibb R; Shoji A; Fayet AL; Perrins CM; Guilford T; Freeman R
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28701505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the offshore distribution and abundance of marine birds with a hierarchical community distance sampling model.
    Goyert HF; Gardner B; Sollmann R; Veit RR; Gilbert AT; Connelly EE; Williams KA
    Ecol Appl; 2016 Sep; 26(6):1797-1815. PubMed ID: 27755708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wind turbines cause functional habitat loss for migratory soaring birds.
    Marques AT; Santos CD; Hanssen F; Muñoz AR; Onrubia A; Wikelski M; Moreira F; Palmeirim JM; Silva JP
    J Anim Ecol; 2020 Jan; 89(1):93-103. PubMed ID: 30762229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operational offshore wind farms and associated ship traffic cause profound changes in distribution patterns of Loons (Gavia spp.).
    Mendel B; Schwemmer P; Peschko V; Müller S; Schwemmer H; Mercker M; Garthe S
    J Environ Manage; 2019 Feb; 231():429-438. PubMed ID: 30368153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Northern gannets (Morus bassanus) are strongly affected by operating offshore wind farms during the breeding season.
    Peschko V; Mendel B; Mercker M; Dierschke J; Garthe S
    J Environ Manage; 2021 Feb; 279():111509. PubMed ID: 33213996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.