BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25210786)

  • 1. Strong epistatic selection on the RNA secondary structure of HIV.
    Assis R
    PLoS Pathog; 2014 Sep; 10(9):e1004363. PubMed ID: 25210786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epistasis-Driven Evolution of the SARS-CoV-2 Secondary Structure.
    Alemrajabi M; Macias Calix K; Assis R
    J Mol Evol; 2022 Dec; 90(6):429-437. PubMed ID: 36178491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base pairing constraints drive structural epistasis in ribosomal RNA sequences.
    Dutheil JY; Jossinet F; Westhof E
    Mol Biol Evol; 2010 Aug; 27(8):1868-76. PubMed ID: 20211929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of SIV and HIV-1 genomic RNA structures reveals impact of sequence evolution on conserved and non-conserved structural motifs.
    Pollom E; Dang KK; Potter EL; Gorelick RJ; Burch CL; Weeks KM; Swanstrom R
    PLoS Pathog; 2013; 9(4):e1003294. PubMed ID: 23593004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensatory Evolution of Intrinsic Transcription Terminators in Bacillus Cereus.
    Safina KR; Mironov AA; Bazykin GA
    Genome Biol Evol; 2017 Feb; 9(2):340-349. PubMed ID: 28201729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limits to detecting epistasis in the fitness landscape of HIV.
    Biswas A; Haldane A; Levy RM
    PLoS One; 2022; 17(1):e0262314. PubMed ID: 35041711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of compensatory molecular evolution involving multiple sites in RNA molecules.
    Kusumi J; Ichinose M; Takefu M; Piskol R; Stephan W; Iizuka M
    J Theor Biol; 2016 Jan; 388():96-107. PubMed ID: 26506471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensatory evolution in mitochondrial tRNAs navigates valleys of low fitness.
    Meer MV; Kondrashov AS; Artzy-Randrup Y; Kondrashov FA
    Nature; 2010 Mar; 464(7286):279-82. PubMed ID: 20182427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR structure of stem-loop SL2 of the HIV-1 psi RNA packaging signal reveals a novel A-U-A base-triple platform.
    Amarasinghe GK; De Guzman RN; Turner RB; Summers MF
    J Mol Biol; 2000 May; 299(1):145-56. PubMed ID: 10860728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A short sequence motif in the 5' leader of the HIV-1 genome modulates extended RNA dimer formation and virus replication.
    van Bel N; Das AT; Cornelissen M; Abbink TE; Berkhout B
    J Biol Chem; 2014 Dec; 289(51):35061-74. PubMed ID: 25368321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease.
    Zhang TH; Dai L; Barton JP; Du Y; Tan Y; Pang W; Chakraborty AK; Lloyd-Smith JO; Sun R
    PLoS Genet; 2020 Oct; 16(10):e1009009. PubMed ID: 33085662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein.
    Gupta A; Adami C
    PLoS Genet; 2016 Mar; 12(3):e1005960. PubMed ID: 27028897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary Analyses of Base-Pairing Interactions in DNA and RNA Secondary Structures.
    Golden M; Murrell B; Martin D; Pybus OG; Hein J
    Mol Biol Evol; 2020 Feb; 37(2):576-592. PubMed ID: 31665393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico predicted robustness of viroid RNA secondary structures. II. Interaction between mutation pairs.
    Sanjuán R; Forment J; Elena SF
    Mol Biol Evol; 2006 Nov; 23(11):2123-30. PubMed ID: 16901984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of HIV Frameshift Site RNA Correlates with Frameshift Efficiency and Decreased Virus Infectivity.
    Garcia-Miranda P; Becker JT; Benner BE; Blume A; Sherer NM; Butcher SE
    J Virol; 2016 Aug; 90(15):6906-6917. PubMed ID: 27194769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fitness ranking of individual mutants drives patterns of epistatic interactions in HIV-1.
    Martínez JP; Bocharov G; Ignatovich A; Reiter J; Dittmar MT; Wain-Hobson S; Meyerhans A
    PLoS One; 2011 Mar; 6(3):e18375. PubMed ID: 21483787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The A-nucleotide preference of HIV-1 in the context of its structured RNA genome.
    van Hemert FJ; van der Kuyl AC; Berkhout B
    RNA Biol; 2013 Feb; 10(2):211-5. PubMed ID: 23235488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of thermodynamic parameters for HIV DIS type loop-loop kissing complexes.
    Weixlbaumer A; Werner A; Flamm C; Westhof E; Schroeder R
    Nucleic Acids Res; 2004; 32(17):5126-33. PubMed ID: 15459283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct probing of RNA structures and RNA-protein interactions in the HIV-1 packaging signal by chemical modification and electrospray ionization fourier transform mass spectrometry.
    Yu E; Fabris D
    J Mol Biol; 2003 Jul; 330(2):211-23. PubMed ID: 12823962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unpaired Guanosines in the 5' Untranslated Region of HIV-1 RNA Act Synergistically To Mediate Genome Packaging.
    Nikolaitchik OA; Somoulay X; Rawson JMO; Yoo JA; Pathak VK; Hu WS
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32796062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.