These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25210786)

  • 41. Impact of human immunodeficiency virus type 1 RNA dimerization on viral infectivity and of stem-loop B on RNA dimerization and reverse transcription and dissociation of dimerization from packaging.
    Shen N; Jetté L; Liang C; Wainberg MA; Laughrea M
    J Virol; 2000 Jun; 74(12):5729-35. PubMed ID: 10823883
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The major HIV-1 packaging signal is an extended bulged stem loop whose structure is altered on interaction with the Gag polyprotein.
    Zeffman A; Hassard S; Varani G; Lever A
    J Mol Biol; 2000 Apr; 297(4):877-93. PubMed ID: 10736224
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular modeling and dynamics studies of HIV-1 kissing loop structures.
    Pattabiraman N; Martinez HM; Shapiro BA
    J Biomol Struct Dyn; 2002 Dec; 20(3):397-412. PubMed ID: 12437378
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Should evolutionary geneticists worry about higher-order epistasis?
    Weinreich DM; Lan Y; Wylie CS; Heckendorn RB
    Curr Opin Genet Dev; 2013 Dec; 23(6):700-7. PubMed ID: 24290990
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Folding of pyrimidine-enriched RNA fragments from the vicinity of the internal ribosomal entry site of hepatitis A virus.
    Hardin CC; Sneeden JL; Lemon SM; Brown BA; Guenther RH; Sierzputowska-Gracz H
    Nucleic Acids Res; 1999 Jan; 27(2):665-73. PubMed ID: 9862995
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deficient dimerization of human immunodeficiency virus type 1 RNA caused by mutations of the u5 RNA sequences.
    Russell RS; Hu J; Laughrea M; Wainberg MA; Liang C
    Virology; 2002 Nov; 303(1):152-63. PubMed ID: 12482667
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding.
    Wilke CO; Lenski RE; Adami C
    BMC Evol Biol; 2003 Feb; 3():3. PubMed ID: 12590655
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data.
    Parisien M; Major F
    Nature; 2008 Mar; 452(7183):51-5. PubMed ID: 18322526
    [TBL] [Abstract][Full Text] [Related]  

  • 49. HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA.
    Bartel DP; Zapp ML; Green MR; Szostak JW
    Cell; 1991 Nov; 67(3):529-36. PubMed ID: 1934059
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Derivation of primary sequences and secondary structures of rev responsive element from HIV-1 infected mothers and infants following vertical transmission.
    Ramakrishnan R; Ahmad N
    Virology; 2007 Mar; 359(1):201-11. PubMed ID: 17045321
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prevalence of epistasis in the evolution of influenza A surface proteins.
    Kryazhimskiy S; Dushoff J; Bazykin GA; Plotkin JB
    PLoS Genet; 2011 Feb; 7(2):e1001301. PubMed ID: 21390205
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distribution of mutational fitness effects and of epistasis in the 5' untranslated region of a plant RNA virus.
    Bernet GP; Elena SF
    BMC Evol Biol; 2015 Dec; 15():274. PubMed ID: 26643527
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure and dimerization of HIV-1 kissing loop aptamers.
    Lodmell JS; Ehresmann C; Ehresmann B; Marquet R
    J Mol Biol; 2001 Aug; 311(3):475-90. PubMed ID: 11493002
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding.
    Csaszar K; Spacková N; Stefl R; Sponer J; Leontis NB
    J Mol Biol; 2001 Nov; 313(5):1073-91. PubMed ID: 11700064
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence of a Direct Evolutionary Selection for Strong Folding and Mutational Robustness Within HIV Coding Regions.
    Goz E; Tuller T
    J Comput Biol; 2016 Aug; 23(8):641-50. PubMed ID: 27347769
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures.
    McBride MS; Panganiban AT
    J Virol; 1996 May; 70(5):2963-73. PubMed ID: 8627772
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The rate of compensatory mutation in the DNA bacteriophage phiX174.
    Poon A; Chao L
    Genetics; 2005 Jul; 170(3):989-99. PubMed ID: 15911582
    [TBL] [Abstract][Full Text] [Related]  

  • 58. HIV-1 nucleocapsid protein activates transient melting of least stable parts of the secondary structure of TAR and its complementary sequence.
    Bernacchi S; Stoylov S; Piémont E; Ficheux D; Roques BP; Darlix JL; Mély Y
    J Mol Biol; 2002 Mar; 317(3):385-99. PubMed ID: 11922672
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The human immunodeficiency virus type 1 TAR RNA upper stem-loop plays distinct roles in reverse transcription and RNA packaging.
    Harrich D; Hooker CW; Parry E
    J Virol; 2000 Jun; 74(12):5639-46. PubMed ID: 10823871
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The fitness landscape of a tRNA gene.
    Li C; Qian W; Maclean CJ; Zhang J
    Science; 2016 May; 352(6287):837-40. PubMed ID: 27080104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.