These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 25210806)
1. Atomic resolution imaging of gold nanoparticle generation and growth in ionic liquids. Uematsu T; Baba M; Oshima Y; Tsuda T; Torimoto T; Kuwabata S J Am Chem Soc; 2014 Oct; 136(39):13789-97. PubMed ID: 25210806 [TBL] [Abstract][Full Text] [Related]
2. Atomic mechanisms of gold nanoparticle growth in ionic liquids studied by in situ scanning transmission electron microscopy. Keller D; Henninen TR; Erni R Nanoscale; 2020 Nov; 12(44):22511-22517. PubMed ID: 33174891 [TBL] [Abstract][Full Text] [Related]
3. Observation of growth of metal nanoparticles. Liao HG; Niu K; Zheng H Chem Commun (Camb); 2013 Dec; 49(100):11720-7. PubMed ID: 24212413 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Zhang H; Cui H Langmuir; 2009 Mar; 25(5):2604-12. PubMed ID: 19437685 [TBL] [Abstract][Full Text] [Related]
5. In situ high-resolution transmission electron microscopy of photocatalytic reactions by excited electrons in ionic liquid. Yoshida K; Nozaki T; Hirayama T; Tanaka N J Electron Microsc (Tokyo); 2007 Oct; 56(5):177-80. PubMed ID: 17947794 [TBL] [Abstract][Full Text] [Related]
6. Formation of gold nanoparticles in a free-standing ionic liquid triggered by heat and electron irradiation. Keller D; Henninen TR; Erni R Micron; 2019 Feb; 117():16-21. PubMed ID: 30419432 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. Li Z; Liu Z; Zhang J; Han B; Du J; Gao Y; Jiang T J Phys Chem B; 2005 Aug; 109(30):14445-8. PubMed ID: 16852818 [TBL] [Abstract][Full Text] [Related]
8. Simulating chemical reactions in ionic liquids using QM/MM methodology. Acevedo O J Phys Chem A; 2014 Dec; 118(50):11653-66. PubMed ID: 25329366 [TBL] [Abstract][Full Text] [Related]
9. Atomic-Resolution Transmission Electron Microscopic Movies for Study of Organic Molecules, Assemblies, and Reactions: The First 10 Years of Development. Nakamura E Acc Chem Res; 2017 Jun; 50(6):1281-1292. PubMed ID: 28481074 [TBL] [Abstract][Full Text] [Related]
10. Nitrile-functionalized pyrrolidinium ionic liquids as solvents for cross-coupling reactions involving in situ generated nanoparticle catalyst reservoirs. Cui Y; Biondi I; Chaubey M; Yang X; Fei Z; Scopelliti R; Hartinger CG; Li Y; Chiappe C; Dyson PJ Phys Chem Chem Phys; 2010 Feb; 12(8):1834-41. PubMed ID: 20145850 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic studies on fast ligand substitution reactions of Pt(II) in different ionic liquids: role of solvent polarity and ion-pair formation. Begel S; Illner P; Kern S; Puchta R; van Eldik R Inorg Chem; 2008 Aug; 47(16):7121-32. PubMed ID: 18620383 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of silver and gold nanoparticles in ionic liquid. Singh P; Kumari K; Katyal A; Kalra R; Chandra R Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(1):218-20. PubMed ID: 19272833 [TBL] [Abstract][Full Text] [Related]
13. Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis. Banerjee A; Theron R; Scott RW ChemSusChem; 2012 Jan; 5(1):109-16. PubMed ID: 22174187 [TBL] [Abstract][Full Text] [Related]
14. Dynamic behavior of nanoscale liquids in graphene liquid cells revealed by in situ transmission electron microscopy. Yang J; Alam SB; Yu L; Chan E; Zheng H Micron; 2019 Jan; 116():22-29. PubMed ID: 30265880 [TBL] [Abstract][Full Text] [Related]
15. Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy. Bae Y; Lim K; Kim S; Kang D; Kim BH; Kim J; Kang S; Jeon S; Cho J; Lee WB; Lee WC; Park J Nano Lett; 2020 Dec; 20(12):8704-8710. PubMed ID: 33186041 [TBL] [Abstract][Full Text] [Related]
16. Preparation of AgX (X = Cl, I) nanoparticles using ionic liquids. Rodil E; Aldous L; Hardacre C; Lagunas MC Nanotechnology; 2008 Mar; 19(10):105603. PubMed ID: 21817705 [TBL] [Abstract][Full Text] [Related]
17. A 'jump-to-coalescence' mechanism during nanoparticle growth revealed by in situ aberration-corrected transmission electron microscopy observations. Neng W; Shuang-ying L; Jun X; Martini M Nanotechnology; 2016 May; 27(20):205605. PubMed ID: 27071654 [TBL] [Abstract][Full Text] [Related]
18. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Yuk JM; Park J; Ercius P; Kim K; Hellebusch DJ; Crommie MF; Lee JY; Zettl A; Alivisatos AP Science; 2012 Apr; 336(6077):61-4. PubMed ID: 22491849 [TBL] [Abstract][Full Text] [Related]
19. Plasma electrochemistry in ionic liquids: deposition of copper nanoparticles. Brettholle M; Höfft O; Klarhöfer L; Mathes S; Maus-Friedrichs W; Zein El Abedin S; Krischok S; Janek J; Endres F Phys Chem Chem Phys; 2010 Feb; 12(8):1750-5. PubMed ID: 20145839 [TBL] [Abstract][Full Text] [Related]
20. Bimolecular electron transfer in ionic liquids: are reaction rates anomalously high? Liang M; Kaintz A; Baker GA; Maroncelli M J Phys Chem B; 2012 Feb; 116(4):1370-84. PubMed ID: 22192141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]