BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25210977)

  • 1. A pressure-tolerant polymer microfluidic device fabricated by the simultaneous solidification-bonding method and flash chemistry application.
    Ren W; Kim H; Lee HJ; Wang J; Wang H; Kim DP
    Lab Chip; 2014 Nov; 14(21):4263-9. PubMed ID: 25210977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole ceramic-like microreactors from inorganic polymers for high temperature or/and high pressure chemical syntheses.
    Ren W; Perumal J; Wang J; Wang H; Sharma S; Kim DP
    Lab Chip; 2014 Feb; 14(4):779-86. PubMed ID: 24356091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayered film microreactors fabricated by a one-step thermal bonding technique with high reproducibility and their applications.
    Min KI; Kim JO; Kim H; Im DJ; Kim DP
    Lab Chip; 2016 Mar; 16(6):977-83. PubMed ID: 26886679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding.
    Díaz-González M; Baldi A
    Anal Chem; 2012 Sep; 84(18):7838-44. PubMed ID: 22905798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and reversible glass-glass bonding method to construct a microfluidic device and its application for cell recovery.
    Funano SI; Ota N; Tanaka Y
    Lab Chip; 2021 Jun; 21(11):2244-2254. PubMed ID: 33908537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bonding Strength of a Glass Microfluidic Device Fabricated by Femtosecond Laser Micromachining and Direct Welding.
    Kim S; Kim J; Joung YH; Choi J; Koo C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30513880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect fabrication of versatile 3D microfluidic device by a rotating plate combined 3D printing system.
    Ha DH; Ko DH; Kim JO; Im DJ; Kim BS; Park SY; Park S; Kim DP; Cho DW
    RSC Adv; 2018 Nov; 8(66):37693-37699. PubMed ID: 35558598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatible "click" wafer bonding for microfluidic devices.
    Saharil F; Carlborg CF; Haraldsson T; van der Wijngaart W
    Lab Chip; 2012 Sep; 12(17):3032-5. PubMed ID: 22760578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of polymer microfluidic systems by hot embossing and laser ablation.
    Locascio LE; Ross DJ; Howell PB; Gaitan M
    Methods Mol Biol; 2006; 339():37-46. PubMed ID: 16790865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flash chemistry: fast chemical synthesis by using microreactors.
    Yoshida J; Nagaki A; Yamada T
    Chemistry; 2008; 14(25):7450-9. PubMed ID: 18537209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices.
    Zhang Z; Wang X; Luo Y; He S; Wang L
    Talanta; 2010 Jun; 81(4-5):1331-8. PubMed ID: 20441903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic microchemical performance of solvent resistant polycarbosilane based microreactor.
    Yoon TH; Jung SH; Kim DP
    J Nanosci Nanotechnol; 2011 May; 11(5):4295-9. PubMed ID: 21780445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel metal-protected plasma treatment for the robust bonding of polydimethylsiloxane.
    Patrito N; McLachlan JM; Faria SN; Chan J; Norton PR
    Lab Chip; 2007 Dec; 7(12):1813-8. PubMed ID: 18030405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet synthesis of well-defined block copolymers using solvent-resistant microfluidic device.
    Hoang PH; Nguyen CT; Perumal J; Kim DP
    Lab Chip; 2011 Jan; 11(2):329-35. PubMed ID: 21072416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injection molded microfluidic chips featuring integrated interconnects.
    Mair DA; Geiger E; Pisano AP; Fréchet JM; Svec F
    Lab Chip; 2006 Oct; 6(10):1346-54. PubMed ID: 17102848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous microfluidic reactors for polymer particles.
    Seo M; Nie Z; Xu S; Mok M; Lewis PC; Graham R; Kumacheva E
    Langmuir; 2005 Dec; 21(25):11614-22. PubMed ID: 16316091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glass microstructure capping and bonding techniques.
    Mazurczyk R; Mansfield CD; Lygan M
    Methods Mol Biol; 2013; 949():141-51. PubMed ID: 23329441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid bonding of Pyrex glass microchips.
    Akiyama Y; Morishima K; Kogi A; Kikutani Y; Tokeshi M; Kitamori T
    Electrophoresis; 2007 Mar; 28(6):994-1001. PubMed ID: 17370301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.