BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 25211026)

  • 21. Analysis of Covalent Modifications of Amyloidogenic Proteins Using Two-Dimensional Electrophoresis: Prion Protein and Its Sialylation.
    Katorcha E; Baskakov IV
    Methods Mol Biol; 2018; 1779():241-255. PubMed ID: 29886537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strain-Dependent Prion Infection in Mice Expressing Prion Protein with Deletion of Central Residues 91-106.
    Uchiyama K; Miyata H; Yamaguchi Y; Imamura M; Okazaki M; Pasiana AD; Chida J; Hara H; Atarashi R; Watanabe H; Kondoh G; Sakaguchi S
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33019549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prion formation, but not clearance, is supported by protein misfolding cyclic amplification.
    Shikiya RA; Eckland TE; Young AJ; Bartz JC
    Prion; 2014; 8(6):415-20. PubMed ID: 25482601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein misfolding cyclic amplification of prions.
    Saunders SE; Bartz JC; Shikiya RA
    J Vis Exp; 2012 Nov; (69):. PubMed ID: 23168797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prion protein self-peptides modulate prion interactions and conversion.
    Rigter A; Priem J; Timmers-Parohi D; Langeveld JP; van Zijderveld FG; Bossers A
    BMC Biochem; 2009 Nov; 10():29. PubMed ID: 19943977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genesis of mammalian prions: from non-infectious amyloid fibrils to a transmissible prion disease.
    Makarava N; Kovacs GG; Savtchenko R; Alexeeva I; Budka H; Rohwer RG; Baskakov IV
    PLoS Pathog; 2011 Dec; 7(12):e1002419. PubMed ID: 22144901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multifaceted Role of Sialylation in Prion Diseases.
    Baskakov IV; Katorcha E
    Front Neurosci; 2016; 10():358. PubMed ID: 27551257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recombinant human prion protein inhibits prion propagation in vitro.
    Yuan J; Zhan YA; Abskharon R; Xiao X; Martinez MC; Zhou X; Kneale G; Mikol J; Lehmann S; Surewicz WK; Castilla J; Steyaert J; Zhang S; Kong Q; Petersen RB; Wohlkonig A; Zou WQ
    Sci Rep; 2013 Oct; 3():2911. PubMed ID: 24105336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro amplification of scrapie and chronic wasting disease PrP(res) using baculovirus-expressed recombinant PrP as substrate.
    Faburay B; Tark D; Kanthasamy AG; Richt JA
    Prion; 2014; 8(6):393-403. PubMed ID: 25495764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sialylation of Glycosylphosphatidylinositol (GPI) Anchors of Mammalian Prions Is Regulated in a Host-, Tissue-, and Cell-specific Manner.
    Katorcha E; Srivastava S; Klimova N; Baskakov IV
    J Biol Chem; 2016 Aug; 291(33):17009-19. PubMed ID: 27317661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Species barrier in prion diseases: a kinetic interpretation based on the conformational adaptation of the prion protein.
    Kellershohn N; Laurent M
    Biochem J; 1998 Sep; 334 ( Pt 3)(Pt 3):539-45. PubMed ID: 9729459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. α2,3 linkage of sialic acid to a GPI anchor and an unpredicted GPI attachment site in human prion protein.
    Kobayashi A; Hirata T; Nishikaze T; Ninomiya A; Maki Y; Takada Y; Kitamoto T; Kinoshita T
    J Biol Chem; 2020 May; 295(22):7789-7798. PubMed ID: 32321762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analyses of N-linked glycans of PrP
    Katorcha E; Baskakov IV
    FEBS J; 2017 Nov; 284(21):3727-3738. PubMed ID: 28898525
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of proteinase K-resistant prion protein in cells and infectious brain homogenate by redox iron: implications for prion replication and disease pathogenesis.
    Basu S; Mohan ML; Luo X; Kundu B; Kong Q; Singh N
    Mol Biol Cell; 2007 Sep; 18(9):3302-12. PubMed ID: 17567949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new mechanism for transmissible prion diseases.
    Makarava N; Kovacs GG; Savtchenko R; Alexeeva I; Ostapchenko VG; Budka H; Rohwer RG; Baskakov IV
    J Neurosci; 2012 May; 32(21):7345-55. PubMed ID: 22623680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation.
    Burke CM; Walsh DJ; Mark KMK; Deleault NR; Nishina KA; Agrimi U; Di Bari MA; Supattapone S
    PLoS Pathog; 2020 Apr; 16(4):e1008495. PubMed ID: 32294141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Altered prion protein glycosylation in the aging mouse brain.
    Goh AX; Li C; Sy MS; Wong BS
    J Neurochem; 2007 Feb; 100(3):841-54. PubMed ID: 17144900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discriminating between cellular and misfolded prion protein by using affinity to 9-aminoacridine compounds.
    Phuan PW; Zorn JA; Safar J; Giles K; Prusiner SB; Cohen FE; May BCH
    J Gen Virol; 2007 Apr; 88(Pt 4):1392-1401. PubMed ID: 17374787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The N-terminal, polybasic region of PrP(C) dictates the efficiency of prion propagation by binding to PrP(Sc).
    Turnbaugh JA; Unterberger U; Saá P; Massignan T; Fluharty BR; Bowman FP; Miller MB; Supattapone S; Biasini E; Harris DA
    J Neurosci; 2012 Jun; 32(26):8817-30. PubMed ID: 22745483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prion Infectivity Plateaus and Conversion to Symptomatic Disease Originate from Falling Precursor Levels and Increased Levels of Oligomeric PrPSc Species.
    Mays CE; van der Merwe J; Kim C; Haldiman T; McKenzie D; Safar JG; Westaway D
    J Virol; 2015 Dec; 89(24):12418-26. PubMed ID: 26423957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.