BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 25211073)

  • 1. Immunoglobulin gene insertions and deletions in the affinity maturation of HIV-1 broadly reactive neutralizing antibodies.
    Kepler TB; Liao HX; Alam SM; Bhaskarabhatla R; Zhang R; Yandava C; Stewart S; Anasti K; Kelsoe G; Parks R; Lloyd KE; Stolarchuk C; Pritchett J; Solomon E; Friberg E; Morris L; Karim SS; Cohen MS; Walter E; Moody MA; Wu X; Altae-Tran HR; Georgiev IS; Kwong PD; Boyd SD; Fire AZ; Mascola JR; Haynes BF
    Cell Host Microbe; 2014 Sep; 16(3):304-13. PubMed ID: 25211073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class HIV-1 broadly neutralizing antibodies.
    Hwang JK; Wang C; Du Z; Meyers RM; Kepler TB; Neuberg D; Kwong PD; Mascola JR; Joyce MG; Bonsignori M; Haynes BF; Yeap LS; Alt FW
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8614-8619. PubMed ID: 28747530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diverse recombinant HIV-1 Envs fail to activate B cells expressing the germline B cell receptors of the broadly neutralizing anti-HIV-1 antibodies PG9 and 447-52D.
    McGuire AT; Glenn JA; Lippy A; Stamatatos L
    J Virol; 2014 Mar; 88(5):2645-57. PubMed ID: 24352455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effects of Framework Mutations at the Variable Domain Interface on Antibody Affinity Maturation in an HIV-1 Broadly Neutralizing Antibody Lineage.
    Zhou JO; Zaidi HA; Ton T; Fera D
    Front Immunol; 2020; 11():1529. PubMed ID: 32765530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Ig knockin mice to study the development and regulation of HIV-1 broadly neutralizing antibodies.
    Verkoczy L; Alt FW; Tian M
    Immunol Rev; 2017 Jan; 275(1):89-107. PubMed ID: 28133799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HIV-1 Neutralizing Antibodies with Limited Hypermutation from an Infant.
    Simonich CA; Williams KL; Verkerke HP; Williams JA; Nduati R; Lee KK; Overbaugh J
    Cell; 2016 Jun; 166(1):77-87. PubMed ID: 27345369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of broadly neutralizing antibodies and viral coevolution in two subjects during the early stages of infection with human immunodeficiency virus type 1.
    Sather DN; Carbonetti S; Malherbe DC; Pissani F; Stuart AB; Hessell AJ; Gray MD; Mikell I; Kalams SA; Haigwood NL; Stamatatos L
    J Virol; 2014 Nov; 88(22):12968-81. PubMed ID: 25122781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimally Mutated HIV-1 Broadly Neutralizing Antibodies to Guide Reductionist Vaccine Design.
    Jardine JG; Sok D; Julien JP; Briney B; Sarkar A; Liang CH; Scherer EA; Henry Dunand CJ; Adachi Y; Diwanji D; Hsueh J; Jones M; Kalyuzhniy O; Kubitz M; Spencer S; Pauthner M; Saye-Francisco KL; Sesterhenn F; Wilson PC; Galloway DM; Stanfield RL; Wilson IA; Burton DR; Schief WR
    PLoS Pathog; 2016 Aug; 12(8):e1005815. PubMed ID: 27560183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Relevance of Improbable Antibody Mutations for HIV Broadly Neutralizing Antibody Development.
    Wiehe K; Bradley T; Meyerhoff RR; Hart C; Williams WB; Easterhoff D; Faison WJ; Kepler TB; Saunders KO; Alam SM; Bonsignori M; Haynes BF
    Cell Host Microbe; 2018 Jun; 23(6):759-765.e6. PubMed ID: 29861171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Darwinian Selection and Mutability on Rate of Broadly Neutralizing Antibody Evolution during HIV-1 Infection.
    Sheng Z; Schramm CA; Connors M; Morris L; Mascola JR; Kwong PD; Shapiro L
    PLoS Comput Biol; 2016 May; 12(5):e1004940. PubMed ID: 27191167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1.
    Bonsignori M; Wiehe K; Grimm SK; Lynch R; Yang G; Kozink DM; Perrin F; Cooper AJ; Hwang KK; Chen X; Liu M; McKee K; Parks RJ; Eudailey J; Wang M; Clowse M; Criscione-Schreiber LG; Moody MA; Ackerman ME; Boyd SD; Gao F; Kelsoe G; Verkoczy L; Tomaras GD; Liao HX; Kepler TB; Montefiori DC; Mascola JR; Haynes BF
    J Clin Invest; 2014 Apr; 124(4):1835-43. PubMed ID: 24614107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive Selection at Key Residues in the HIV Envelope Distinguishes Broad and Strain-Specific Plasma Neutralizing Antibodies.
    Mabvakure BM; Scheepers C; Garrett N; Abdool Karim S; Williamson C; Morris L; Moore PL
    J Virol; 2019 Mar; 93(6):. PubMed ID: 30567996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of immunoglobulin elbow region mutations impacts interdomain conformational flexibility in HIV-1 broadly neutralizing antibodies.
    Henderson R; Watts BE; Ergin HN; Anasti K; Parks R; Xia SM; Trama A; Liao HX; Saunders KO; Bonsignori M; Wiehe K; Haynes BF; Alam SM
    Nat Commun; 2019 Feb; 10(1):654. PubMed ID: 30737386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of somatic hypermutation on neutralization and binding in the PGT121 family of broadly neutralizing HIV antibodies.
    Sok D; Laserson U; Laserson J; Liu Y; Vigneault F; Julien JP; Briney B; Ramos A; Saye KF; Le K; Mahan A; Wang S; Kardar M; Yaari G; Walker LM; Simen BB; St John EP; Chan-Hui PY; Swiderek K; Kleinstein SH; Alter G; Seaman MS; Chakraborty AK; Koller D; Wilson IA; Church GM; Burton DR; Poignard P
    PLoS Pathog; 2013; 9(11):e1003754. PubMed ID: 24278016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VRC34-Antibody Lineage Development Reveals How a Required Rare Mutation Shapes the Maturation of a Broad HIV-Neutralizing Lineage.
    Shen CH; DeKosky BJ; Guo Y; Xu K; Gu Y; Kilam D; Ko SH; Kong R; Liu K; Louder MK; Ou L; Zhang B; Chao CW; Corcoran MM; Feng E; Huang J; Normandin E; O'Dell S; Ransier A; Rawi R; Sastry M; Schmidt SD; Wang S; Wang Y; Chuang GY; Doria-Rose NA; Lin B; Zhou T; Boritz EA; Connors M; Douek DC; Karlsson Hedestam GB; Sheng Z; Shapiro L; Mascola JR; Kwong PD
    Cell Host Microbe; 2020 Apr; 27(4):531-543.e6. PubMed ID: 32130953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Rare Mutation in an Infant-Derived HIV-1 Envelope Glycoprotein Alters Interprotomer Stability and Susceptibility to Broadly Neutralizing Antibodies Targeting the Trimer Apex.
    Mishra N; Sharma S; Dobhal A; Kumar S; Chawla H; Singh R; Das BK; Kabra SK; Lodha R; Luthra K
    J Virol; 2020 Sep; 94(19):. PubMed ID: 32669335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of broadly neutralizing antibodies in HIV-1 infected elite neutralizers.
    Landais E; Moore PL
    Retrovirology; 2018 Sep; 15(1):61. PubMed ID: 30185183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single mutation turns a non-binding germline-like predecessor of broadly neutralizing antibody into a binding antibody to HIV-1 envelope glycoproteins.
    Yuan T; Li J; Zhang MY
    MAbs; 2011; 3(4):402-7. PubMed ID: 21540646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Staged induction of HIV-1 glycan-dependent broadly neutralizing antibodies.
    Bonsignori M; Kreider EF; Fera D; Meyerhoff RR; Bradley T; Wiehe K; Alam SM; Aussedat B; Walkowicz WE; Hwang KK; Saunders KO; Zhang R; Gladden MA; Monroe A; Kumar A; Xia SM; Cooper M; Louder MK; McKee K; Bailer RT; Pier BW; Jette CA; Kelsoe G; Williams WB; Morris L; Kappes J; Wagh K; Kamanga G; Cohen MS; Hraber PT; Montefiori DC; Trama A; Liao HX; Kepler TB; Moody MA; Gao F; Danishefsky SJ; Mascola JR; Shaw GM; Hahn BH; Harrison SC; Korber BT; Haynes BF
    Sci Transl Med; 2017 Mar; 9(381):. PubMed ID: 28298420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycans Function as Anchors for Antibodies and Help Drive HIV Broadly Neutralizing Antibody Development.
    Andrabi R; Su CY; Liang CH; Shivatare SS; Briney B; Voss JE; Nawazi SK; Wu CY; Wong CH; Burton DR
    Immunity; 2017 Sep; 47(3):524-537.e3. PubMed ID: 28916265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.